0_demo.md 3.08 KB
Newer Older
1
2
3
4
# Demo

## Introduction

5
We provide scipts for multi-modality/single-modality and indoor/outdoor 3D detection demos. The pre-trained models can be downloaded from [model zoo](https://github.com/open-mmlab/mmdetection3d/blob/master/docs/model_zoo.md/). We provide pre-processed sample data from KITTI and SUN RGB-D dataset. You can use any other data following our pre-processing steps.
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

## Testing

### Single-modality demo

To test a 3D detector on point cloud data, simply run:

```shell
python demo/pcd_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}]
```

The visualization results including a point cloud and predicted 3D bounding boxes will be saved in ```demo/PCD_NAME```, which you can open using [MeshLab](http://www.meshlab.net/).

Example on KITTI data using [SECOND](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/second) model:

```shell
python demo/pcd_demo.py demo/data/kitti/kitti_000008.bin configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth
```

Example on SUN RGB-D data using [VoteNet](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/votenet) model:

```shell
python demo/pcd_demo.py demo/data/sunrgbd/sunrgbd_000017.bin configs/votenet/votenet_16x8_sunrgbd-3d-10class.py checkpoints/votenet_16x8_sunrgbd-3d-10class_20200620_230238-4483c0c0.pth
```

31
Remember to convert the VoteNet checkpoint if you are using mmdetection3d version >= 0.6.0. See its [README](https://github.com/open-mmlab/mmdetection3d/blob/master/configs/votenet/README.md/) for detailed instructions on how to convert the checkpoint.
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

### Multi-modality demo

To test a 3D detector on multi-modality data (typically point cloud and image), simply run:

```shell
python demo/multi_modality_demo.py ${PCD_FILE} ${IMAGE_FILE} ${ANNOTATION_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}]
```

where the ```ANNOTATION_FILE``` should provide the 3D to 2D projection matrix. The visualization results including a point cloud, an image, predicted 3D bounding boxes and their projection on the image will be saved in ```demo/PCD_NAME```.

Example on KITTI data using [MVX-Net](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/mvxnet) model:

```shell
python demo/multi_modality_demo.py demo/data/kitti/kitti_000008.bin demo/data/kitti/kitti_000008.png demo/data/kitti/kitti_000008_infos.pkl configs/mvxnet/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class.py checkpoints/dv_mvx-fpn_second_secfpn_adamw_2x8_80e_kitti-3d-3class_20200621_003904-10140f2d.pth
```

Example on SUN RGB-D data using [ImVoteNet](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/imvotenet) model:

```shell
python demo/multi_modality_demo.py demo/data/sunrgbd/sunrgbd_000017.bin demo/data/sunrgbd/sunrgbd_000017.jpg demo/data/sunrgbd/sunrgbd_000017_infos.pkl configs/imvotenet/imvotenet_stage2_16x8_sunrgbd-3d-10class.py checkpoints/imvotenet_stage2_16x8_sunrgbd-3d-10class_20210323_184021-d44dcb66.pth
```