centerpoint_head.py 36.3 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import copy
jshilong's avatar
jshilong committed
3
from typing import Dict, List, Optional, Tuple, Union
4

5
import torch
6
from mmcv.cnn import ConvModule, build_conv_layer
7
from mmdet.models.utils import multi_apply
8
from mmengine.model import BaseModule
9
from mmengine.structures import InstanceData
jshilong's avatar
jshilong committed
10
from torch import Tensor, nn
11

zhangshilong's avatar
zhangshilong committed
12
13
from mmdet3d.models.utils import (clip_sigmoid, draw_heatmap_gaussian,
                                  gaussian_radius)
jshilong's avatar
jshilong committed
14
from mmdet3d.registry import MODELS, TASK_UTILS
zhangshilong's avatar
zhangshilong committed
15
16
from mmdet3d.structures import Det3DDataSample, xywhr2xyxyr
from ..layers import circle_nms, nms_bev
17
18


19
@MODELS.register_module()
20
class SeparateHead(BaseModule):
21
22
23
24
25
    """SeparateHead for CenterHead.

    Args:
        in_channels (int): Input channels for conv_layer.
        heads (dict): Conv information.
26
        head_conv (int, optional): Output channels.
27
            Default: 64.
Tai-Wang's avatar
Tai-Wang committed
28
        final_kernel (int, optional): Kernel size for the last conv layer.
29
            Default: 1.
30
31
        init_bias (float, optional): Initial bias. Default: -2.19.
        conv_cfg (dict, optional): Config of conv layer.
32
            Default: dict(type='Conv2d')
33
        norm_cfg (dict, optional): Config of norm layer.
34
            Default: dict(type='BN2d').
35
        bias (str, optional): Type of bias. Default: 'auto'.
36
37
38
39
40
41
42
43
44
45
46
    """

    def __init__(self,
                 in_channels,
                 heads,
                 head_conv=64,
                 final_kernel=1,
                 init_bias=-2.19,
                 conv_cfg=dict(type='Conv2d'),
                 norm_cfg=dict(type='BN2d'),
                 bias='auto',
47
                 init_cfg=None,
48
                 **kwargs):
49
50
51
        assert init_cfg is None, 'To prevent abnormal initialization ' \
            'behavior, init_cfg is not allowed to be set'
        super(SeparateHead, self).__init__(init_cfg=init_cfg)
52
53
54
55
56
        self.heads = heads
        self.init_bias = init_bias
        for head in self.heads:
            classes, num_conv = self.heads[head]
            conv_layers = []
57
            c_in = in_channels
58
59
60
            for i in range(num_conv - 1):
                conv_layers.append(
                    ConvModule(
61
                        c_in,
62
63
64
65
66
67
68
                        head_conv,
                        kernel_size=final_kernel,
                        stride=1,
                        padding=final_kernel // 2,
                        bias=bias,
                        conv_cfg=conv_cfg,
                        norm_cfg=norm_cfg))
69
                c_in = head_conv
70
71
72
73
74
75
76
77
78
79
80
81
82
83

            conv_layers.append(
                build_conv_layer(
                    conv_cfg,
                    head_conv,
                    classes,
                    kernel_size=final_kernel,
                    stride=1,
                    padding=final_kernel // 2,
                    bias=True))
            conv_layers = nn.Sequential(*conv_layers)

            self.__setattr__(head, conv_layers)

84
85
86
            if init_cfg is None:
                self.init_cfg = dict(type='Kaiming', layer='Conv2d')

87
88
    def init_weights(self):
        """Initialize weights."""
89
        super().init_weights()
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        for head in self.heads:
            if head == 'heatmap':
                self.__getattr__(head)[-1].bias.data.fill_(self.init_bias)

    def forward(self, x):
        """Forward function for SepHead.

        Args:
            x (torch.Tensor): Input feature map with the shape of
                [B, 512, 128, 128].

        Returns:
            dict[str: torch.Tensor]: contains the following keys:

104
                -reg (torch.Tensor): 2D regression value with the
105
                    shape of [B, 2, H, W].
106
                -height (torch.Tensor): Height value with the
107
                    shape of [B, 1, H, W].
108
                -dim (torch.Tensor): Size value with the shape
109
                    of [B, 3, H, W].
110
                -rot (torch.Tensor): Rotation value with the
111
                    shape of [B, 2, H, W].
112
                -vel (torch.Tensor): Velocity value with the
113
                    shape of [B, 2, H, W].
114
                -heatmap (torch.Tensor): Heatmap with the shape of
115
116
117
118
119
120
121
122
123
                    [B, N, H, W].
        """
        ret_dict = dict()
        for head in self.heads:
            ret_dict[head] = self.__getattr__(head)(x)

        return ret_dict


124
@MODELS.register_module()
125
class DCNSeparateHead(BaseModule):
126
    r"""DCNSeparateHead for CenterHead.
127
128
129
130
131
132
133
134

    .. code-block:: none
            /-----> DCN for heatmap task -----> heatmap task.
    feature
            \-----> DCN for regression tasks -----> regression tasks

    Args:
        in_channels (int): Input channels for conv_layer.
135
        num_cls (int): Number of classes.
136
137
        heads (dict): Conv information.
        dcn_config (dict): Config of dcn layer.
138
        head_conv (int, optional): Output channels.
139
            Default: 64.
Tai-Wang's avatar
Tai-Wang committed
140
        final_kernel (int, optional): Kernel size for the last conv
141
            layer. Default: 1.
142
143
        init_bias (float, optional): Initial bias. Default: -2.19.
        conv_cfg (dict, optional): Config of conv layer.
144
            Default: dict(type='Conv2d')
145
        norm_cfg (dict, optional): Config of norm layer.
146
            Default: dict(type='BN2d').
147
        bias (str, optional): Type of bias. Default: 'auto'.
148
149
150
151
152
153
154
155
156
157
158
159
160
    """  # noqa: W605

    def __init__(self,
                 in_channels,
                 num_cls,
                 heads,
                 dcn_config,
                 head_conv=64,
                 final_kernel=1,
                 init_bias=-2.19,
                 conv_cfg=dict(type='Conv2d'),
                 norm_cfg=dict(type='BN2d'),
                 bias='auto',
161
                 init_cfg=None,
162
                 **kwargs):
163
164
165
        assert init_cfg is None, 'To prevent abnormal initialization ' \
            'behavior, init_cfg is not allowed to be set'
        super(DCNSeparateHead, self).__init__(init_cfg=init_cfg)
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        if 'heatmap' in heads:
            heads.pop('heatmap')
        # feature adaptation with dcn
        # use separate features for classification / regression
        self.feature_adapt_cls = build_conv_layer(dcn_config)

        self.feature_adapt_reg = build_conv_layer(dcn_config)

        # heatmap prediction head
        cls_head = [
            ConvModule(
                in_channels,
                head_conv,
                kernel_size=3,
                padding=1,
                conv_cfg=conv_cfg,
                bias=bias,
                norm_cfg=norm_cfg),
            build_conv_layer(
                conv_cfg,
                head_conv,
                num_cls,
                kernel_size=3,
                stride=1,
                padding=1,
                bias=bias)
        ]
        self.cls_head = nn.Sequential(*cls_head)
        self.init_bias = init_bias
        # other regression target
        self.task_head = SeparateHead(
            in_channels,
            heads,
            head_conv=head_conv,
            final_kernel=final_kernel,
            bias=bias)
202
203
        if init_cfg is None:
            self.init_cfg = dict(type='Kaiming', layer='Conv2d')
204
205
206

    def init_weights(self):
        """Initialize weights."""
207
        super().init_weights()
208
209
210
211
212
213
214
215
216
217
218
219
        self.cls_head[-1].bias.data.fill_(self.init_bias)

    def forward(self, x):
        """Forward function for DCNSepHead.

        Args:
            x (torch.Tensor): Input feature map with the shape of
                [B, 512, 128, 128].

        Returns:
            dict[str: torch.Tensor]: contains the following keys:

220
                -reg (torch.Tensor): 2D regression value with the
221
                    shape of [B, 2, H, W].
222
                -height (torch.Tensor): Height value with the
223
                    shape of [B, 1, H, W].
224
                -dim (torch.Tensor): Size value with the shape
225
                    of [B, 3, H, W].
226
                -rot (torch.Tensor): Rotation value with the
227
                    shape of [B, 2, H, W].
228
                -vel (torch.Tensor): Velocity value with the
229
                    shape of [B, 2, H, W].
230
                -heatmap (torch.Tensor): Heatmap with the shape of
231
232
233
234
235
236
237
238
239
240
241
242
                    [B, N, H, W].
        """
        center_feat = self.feature_adapt_cls(x)
        reg_feat = self.feature_adapt_reg(x)

        cls_score = self.cls_head(center_feat)
        ret = self.task_head(reg_feat)
        ret['heatmap'] = cls_score

        return ret


243
@MODELS.register_module()
244
class CenterHead(BaseModule):
245
246
247
    """CenterHead for CenterPoint.

    Args:
248
249
250
        in_channels (list[int] | int, optional): Channels of the input
            feature map. Default: [128].
        tasks (list[dict], optional): Task information including class number
251
            and class names. Default: None.
252
253
        bbox_coder (dict, optional): Bbox coder configs. Default: None.
        common_heads (dict, optional): Conv information for common heads.
254
            Default: dict().
255
        loss_cls (dict, optional): Config of classification loss function.
256
            Default: dict(type='GaussianFocalLoss', reduction='mean').
257
        loss_bbox (dict, optional): Config of regression loss function.
258
            Default: dict(type='L1Loss', reduction='none').
259
        separate_head (dict, optional): Config of separate head. Default: dict(
260
            type='SeparateHead', init_bias=-2.19, final_kernel=3)
261
262
263
264
265
        share_conv_channel (int, optional): Output channels for share_conv
            layer. Default: 64.
        num_heatmap_convs (int, optional): Number of conv layers for heatmap
            conv layer. Default: 2.
        conv_cfg (dict, optional): Config of conv layer.
266
            Default: dict(type='Conv2d')
267
        norm_cfg (dict, optional): Config of norm layer.
268
            Default: dict(type='BN2d').
jshilong's avatar
jshilong committed
269
270
271
272
273
274
        bias (str): Type of bias. Default: 'auto'.
        norm_bbox (bool): Whether normalize the bbox predictions.
            Defaults to True.
        train_cfg (dict, optional): Train-time configs. Default: None.
        test_cfg (dict, optional): Test-time configs. Default: None.
        init_cfg (dict, optional): Config for initialization.
275
276
277
    """

    def __init__(self,
jshilong's avatar
jshilong committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
                 in_channels: Union[List[int], int] = [128],
                 tasks: Optional[List[dict]] = None,
                 bbox_coder: Optional[dict] = None,
                 common_heads: dict = dict(),
                 loss_cls: dict = dict(
                     type='mmdet.GaussianFocalLoss', reduction='mean'),
                 loss_bbox: dict = dict(
                     type='mmdet.L1Loss', reduction='none', loss_weight=0.25),
                 separate_head: dict = dict(
                     type='mmdet.SeparateHead',
                     init_bias=-2.19,
                     final_kernel=3),
                 share_conv_channel: int = 64,
                 num_heatmap_convs: int = 2,
                 conv_cfg: dict = dict(type='Conv2d'),
                 norm_cfg: dict = dict(type='BN2d'),
                 bias: str = 'auto',
                 norm_bbox: bool = True,
                 train_cfg: Optional[dict] = None,
                 test_cfg: Optional[dict] = None,
                 init_cfg: Optional[dict] = None,
                 **kwargs):
300
301
        assert init_cfg is None, 'To prevent abnormal initialization ' \
            'behavior, init_cfg is not allowed to be set'
jshilong's avatar
jshilong committed
302
        super(CenterHead, self).__init__(init_cfg=init_cfg, **kwargs)
303

jshilong's avatar
jshilong committed
304
305
306
307
        # TODO we should rename this variable,
        # for example num_classes_per_task ?
        # {'num_class': 2, 'class_names': ['pedestrian', 'traffic_cone']}]
        # TODO seems num_classes is useless
308
309
310
311
312
313
314
315
        num_classes = [len(t['class_names']) for t in tasks]
        self.class_names = [t['class_names'] for t in tasks]
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.norm_bbox = norm_bbox

jshilong's avatar
jshilong committed
316
317
318
        self.loss_cls = MODELS.build(loss_cls)
        self.loss_bbox = MODELS.build(loss_bbox)
        self.bbox_coder = TASK_UTILS.build(bbox_coder)
319
        self.num_anchor_per_locs = [n for n in num_classes]
320
        self.fp16_enabled = False
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

        # a shared convolution
        self.shared_conv = ConvModule(
            in_channels,
            share_conv_channel,
            kernel_size=3,
            padding=1,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            bias=bias)

        self.task_heads = nn.ModuleList()

        for num_cls in num_classes:
            heads = copy.deepcopy(common_heads)
            heads.update(dict(heatmap=(num_cls, num_heatmap_convs)))
337
            separate_head.update(
338
                in_channels=share_conv_channel, heads=heads, num_cls=num_cls)
339
            self.task_heads.append(MODELS.build(separate_head))
340

jshilong's avatar
jshilong committed
341
    def forward_single(self, x: Tensor) -> dict:
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
        """Forward function for CenterPoint.

        Args:
            x (torch.Tensor): Input feature map with the shape of
                [B, 512, 128, 128].

        Returns:
            list[dict]: Output results for tasks.
        """
        ret_dicts = []

        x = self.shared_conv(x)

        for task in self.task_heads:
            ret_dicts.append(task(x))

        return ret_dicts

jshilong's avatar
jshilong committed
360
    def forward(self, feats: List[Tensor]) -> Tuple[List[Tensor]]:
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
        """Forward pass.

        Args:
            feats (list[torch.Tensor]): Multi-level features, e.g.,
                features produced by FPN.

        Returns:
            tuple(list[dict]): Output results for tasks.
        """
        return multi_apply(self.forward_single, feats)

    def _gather_feat(self, feat, ind, mask=None):
        """Gather feature map.

        Given feature map and index, return indexed feature map.

        Args:
            feat (torch.tensor): Feature map with the shape of [B, H*W, 10].
            ind (torch.Tensor): Index of the ground truth boxes with the
                shape of [B, max_obj].
381
382
            mask (torch.Tensor, optional): Mask of the feature map with the
                shape of [B, max_obj]. Default: None.
383
384
385
386
387
388
389
390
391
392
393
394
395
396

        Returns:
            torch.Tensor: Feature map after gathering with the shape
                of [B, max_obj, 10].
        """
        dim = feat.size(2)
        ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim)
        feat = feat.gather(1, ind)
        if mask is not None:
            mask = mask.unsqueeze(2).expand_as(feat)
            feat = feat[mask]
            feat = feat.view(-1, dim)
        return feat

jshilong's avatar
jshilong committed
397
398
399
400
    def get_targets(
        self,
        batch_gt_instances_3d: List[InstanceData],
    ) -> Tuple[List[Tensor]]:
401
402
        """Generate targets.

403
404
405
406
407
408
409
410
411
412
413
        How each output is transformed:

            Each nested list is transposed so that all same-index elements in
            each sub-list (1, ..., N) become the new sub-lists.
                [ [a0, a1, a2, ... ], [b0, b1, b2, ... ], ... ]
                ==> [ [a0, b0, ... ], [a1, b1, ... ], [a2, b2, ... ] ]

            The new transposed nested list is converted into a list of N
            tensors generated by concatenating tensors in the new sub-lists.
                [ tensor0, tensor1, tensor2, ... ]

414
        Args:
jshilong's avatar
jshilong committed
415
416
417
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instances. It usually includes ``bboxes_3d`` and\
                ``labels_3d`` attributes.
418
419
420

        Returns:
            Returns:
421
                tuple[list[torch.Tensor]]: Tuple of target including
422
423
                    the following results in order.

jshilong's avatar
jshilong committed
424
425
426
427
428
429
                - list[torch.Tensor]: Heatmap scores.
                - list[torch.Tensor]: Ground truth boxes.
                - list[torch.Tensor]: Indexes indicating the
                    position of the valid boxes.
                - list[torch.Tensor]: Masks indicating which
                    boxes are valid.
430
431
        """
        heatmaps, anno_boxes, inds, masks = multi_apply(
jshilong's avatar
jshilong committed
432
            self.get_targets_single, batch_gt_instances_3d)
433
434
        # Transpose heatmaps
        heatmaps = list(map(list, zip(*heatmaps)))
435
        heatmaps = [torch.stack(hms_) for hms_ in heatmaps]
436
437
        # Transpose anno_boxes
        anno_boxes = list(map(list, zip(*anno_boxes)))
438
        anno_boxes = [torch.stack(anno_boxes_) for anno_boxes_ in anno_boxes]
439
440
        # Transpose inds
        inds = list(map(list, zip(*inds)))
441
        inds = [torch.stack(inds_) for inds_ in inds]
442
443
        # Transpose inds
        masks = list(map(list, zip(*masks)))
444
445
446
        masks = [torch.stack(masks_) for masks_ in masks]
        return heatmaps, anno_boxes, inds, masks

jshilong's avatar
jshilong committed
447
448
    def get_targets_single(self,
                           gt_instances_3d: InstanceData) -> Tuple[Tensor]:
449
450
451
        """Generate training targets for a single sample.

        Args:
jshilong's avatar
jshilong committed
452
453
454
            gt_instances_3d (:obj:`InstanceData`): Gt_instances of
                single data sample. It usually includes
                ``bboxes_3d`` and ``labels_3d`` attributes.
455
456

        Returns:
457
            tuple[list[torch.Tensor]]: Tuple of target including
458
459
460
461
                the following results in order.

                - list[torch.Tensor]: Heatmap scores.
                - list[torch.Tensor]: Ground truth boxes.
462
                - list[torch.Tensor]: Indexes indicating the position
463
                    of the valid boxes.
464
                - list[torch.Tensor]: Masks indicating which boxes
465
466
                    are valid.
        """
jshilong's avatar
jshilong committed
467
468
        gt_labels_3d = gt_instances_3d.labels_3d
        gt_bboxes_3d = gt_instances_3d.bboxes_3d
469
470
471
472
473
        device = gt_labels_3d.device
        gt_bboxes_3d = torch.cat(
            (gt_bboxes_3d.gravity_center, gt_bboxes_3d.tensor[:, 3:]),
            dim=1).to(device)
        max_objs = self.train_cfg['max_objs'] * self.train_cfg['dense_reg']
474
        grid_size = torch.tensor(self.train_cfg['grid_size']).to(device)
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
        pc_range = torch.tensor(self.train_cfg['point_cloud_range'])
        voxel_size = torch.tensor(self.train_cfg['voxel_size'])

        feature_map_size = grid_size[:2] // self.train_cfg['out_size_factor']

        # reorganize the gt_dict by tasks
        task_masks = []
        flag = 0
        for class_name in self.class_names:
            task_masks.append([
                torch.where(gt_labels_3d == class_name.index(i) + flag)
                for i in class_name
            ])
            flag += len(class_name)

        task_boxes = []
        task_classes = []
        flag2 = 0
        for idx, mask in enumerate(task_masks):
            task_box = []
            task_class = []
            for m in mask:
                task_box.append(gt_bboxes_3d[m])
                # 0 is background for each task, so we need to add 1 here.
                task_class.append(gt_labels_3d[m] + 1 - flag2)
            task_boxes.append(torch.cat(task_box, axis=0).to(device))
            task_classes.append(torch.cat(task_class).long().to(device))
            flag2 += len(mask)
        draw_gaussian = draw_heatmap_gaussian
        heatmaps, anno_boxes, inds, masks = [], [], [], []

        for idx, task_head in enumerate(self.task_heads):
            heatmap = gt_bboxes_3d.new_zeros(
                (len(self.class_names[idx]), feature_map_size[1],
                 feature_map_size[0]))

            anno_box = gt_bboxes_3d.new_zeros((max_objs, 10),
                                              dtype=torch.float32)

            ind = gt_labels_3d.new_zeros((max_objs), dtype=torch.int64)
            mask = gt_bboxes_3d.new_zeros((max_objs), dtype=torch.uint8)

            num_objs = min(task_boxes[idx].shape[0], max_objs)

            for k in range(num_objs):
                cls_id = task_classes[idx][k] - 1

                width = task_boxes[idx][k][3]
                length = task_boxes[idx][k][4]
                width = width / voxel_size[0] / self.train_cfg[
                    'out_size_factor']
                length = length / voxel_size[1] / self.train_cfg[
                    'out_size_factor']

                if width > 0 and length > 0:
                    radius = gaussian_radius(
                        (length, width),
                        min_overlap=self.train_cfg['gaussian_overlap'])
                    radius = max(self.train_cfg['min_radius'], int(radius))

                    # be really careful for the coordinate system of
                    # your box annotation.
                    x, y, z = task_boxes[idx][k][0], task_boxes[idx][k][
                        1], task_boxes[idx][k][2]

                    coor_x = (
                        x - pc_range[0]
                    ) / voxel_size[0] / self.train_cfg['out_size_factor']
                    coor_y = (
                        y - pc_range[1]
                    ) / voxel_size[1] / self.train_cfg['out_size_factor']

                    center = torch.tensor([coor_x, coor_y],
                                          dtype=torch.float32,
                                          device=device)
                    center_int = center.to(torch.int32)

                    # throw out not in range objects to avoid out of array
                    # area when creating the heatmap
                    if not (0 <= center_int[0] < feature_map_size[0]
                            and 0 <= center_int[1] < feature_map_size[1]):
                        continue

                    draw_gaussian(heatmap[cls_id], center_int, radius)

                    new_idx = k
                    x, y = center_int[0], center_int[1]

                    assert (y * feature_map_size[0] + x <
                            feature_map_size[0] * feature_map_size[1])

                    ind[new_idx] = y * feature_map_size[0] + x
                    mask[new_idx] = 1
                    # TODO: support other outdoor dataset
                    vx, vy = task_boxes[idx][k][7:]
                    rot = task_boxes[idx][k][6]
                    box_dim = task_boxes[idx][k][3:6]
                    if self.norm_bbox:
                        box_dim = box_dim.log()
                    anno_box[new_idx] = torch.cat([
                        center - torch.tensor([x, y], device=device),
                        z.unsqueeze(0), box_dim,
                        torch.sin(rot).unsqueeze(0),
                        torch.cos(rot).unsqueeze(0),
                        vx.unsqueeze(0),
                        vy.unsqueeze(0)
                    ])

            heatmaps.append(heatmap)
            anno_boxes.append(anno_box)
            masks.append(mask)
            inds.append(ind)
        return heatmaps, anno_boxes, inds, masks

jshilong's avatar
jshilong committed
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
    def loss(self, pts_feats: List[Tensor],
             batch_data_samples: List[Det3DDataSample], *args,
             **kwargs) -> Dict[str, Tensor]:
        """Forward function for point cloud branch.

        Args:
            pts_feats (list[torch.Tensor]): Features of point cloud branch
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance_3d`, .

        Returns:
            dict: Losses of each branch.
        """
        outs = self(pts_feats)
        batch_gt_instance_3d = []
        for data_sample in batch_data_samples:
            batch_gt_instance_3d.append(data_sample.gt_instances_3d)
        losses = self.loss_by_feat(outs, batch_gt_instance_3d)
        return losses

    def loss_by_feat(self, preds_dicts: Tuple[List[dict]],
                     batch_gt_instances_3d: List[InstanceData], *args,
                     **kwargs):
613
614
615
        """Loss function for CenterHead.

        Args:
jshilong's avatar
jshilong committed
616
617
618
619
620
621
622
            preds_dicts (tuple[list[dict]]): Prediction results of
                multiple tasks. The outer tuple indicate  different
                tasks head, and the internal list indicate different
                FPN level.
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instances. It usually includes ``bboxes_3d`` and\
                ``labels_3d`` attributes.
623
624

        Returns:
jshilong's avatar
jshilong committed
625
            dict[str,torch.Tensor]: Loss of heatmap and bbox of each task.
626
        """
jshilong's avatar
jshilong committed
627

628
        heatmaps, anno_boxes, inds, masks = self.get_targets(
jshilong's avatar
jshilong committed
629
            batch_gt_instances_3d)
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
        loss_dict = dict()
        for task_id, preds_dict in enumerate(preds_dicts):
            # heatmap focal loss
            preds_dict[0]['heatmap'] = clip_sigmoid(preds_dict[0]['heatmap'])
            num_pos = heatmaps[task_id].eq(1).float().sum().item()
            loss_heatmap = self.loss_cls(
                preds_dict[0]['heatmap'],
                heatmaps[task_id],
                avg_factor=max(num_pos, 1))
            target_box = anno_boxes[task_id]
            # reconstruct the anno_box from multiple reg heads
            preds_dict[0]['anno_box'] = torch.cat(
                (preds_dict[0]['reg'], preds_dict[0]['height'],
                 preds_dict[0]['dim'], preds_dict[0]['rot'],
                 preds_dict[0]['vel']),
                dim=1)

            # Regression loss for dimension, offset, height, rotation
            ind = inds[task_id]
            num = masks[task_id].float().sum()
            pred = preds_dict[0]['anno_box'].permute(0, 2, 3, 1).contiguous()
            pred = pred.view(pred.size(0), -1, pred.size(3))
            pred = self._gather_feat(pred, ind)
            mask = masks[task_id].unsqueeze(2).expand_as(target_box).float()
            isnotnan = (~torch.isnan(target_box)).float()
            mask *= isnotnan

            code_weights = self.train_cfg.get('code_weights', None)
            bbox_weights = mask * mask.new_tensor(code_weights)
            loss_bbox = self.loss_bbox(
                pred, target_box, bbox_weights, avg_factor=(num + 1e-4))
            loss_dict[f'task{task_id}.loss_heatmap'] = loss_heatmap
            loss_dict[f'task{task_id}.loss_bbox'] = loss_bbox
        return loss_dict

jshilong's avatar
jshilong committed
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
    def predict(self,
                pts_feats: Dict[str, torch.Tensor],
                batch_data_samples: List[Det3DDataSample],
                rescale=True,
                **kwargs) -> List[InstanceData]:
        """
        Args:
            pts_feats (dict): Point features..
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                Samples. It usually includes meta information of data.
            rescale (bool): Whether rescale the resutls to
                the original scale.

        Returns:
            list[:obj:`InstanceData`]: List of processed predictions. Each
            InstanceData contains 3d Bounding boxes and corresponding
            scores and labels.
        """
        preds_dict = self(pts_feats)
        batch_size = len(batch_data_samples)
        batch_input_metas = []
        for batch_index in range(batch_size):
            metainfo = batch_data_samples[batch_index].metainfo
            batch_input_metas.append(metainfo)

        results_list = self.predict_by_feat(
            preds_dict, batch_input_metas, rescale=rescale, **kwargs)
        return results_list

    def predict_by_feat(self, preds_dicts: Tuple[List[dict]],
                        batch_input_metas: List[dict], *args,
                        **kwargs) -> List[InstanceData]:
697
698
699
        """Generate bboxes from bbox head predictions.

        Args:
jshilong's avatar
jshilong committed
700
701
702
703
704
705
            preds_dicts (tuple[list[dict]]): Prediction results of
                multiple tasks. The outer tuple indicate  different
                tasks head, and the internal list indicate different
                FPN level.
            batch_input_metas (list[dict]): Meta info of multiple
                inputs.
706
707

        Returns:
jshilong's avatar
jshilong committed
708
709
710
711
712
713
714
715
716
717
718
719
720
            list[:obj:`InstanceData`]: Instance prediction
            results of each sample after the post process.
            Each item usually contains following keys.

                - scores_3d (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels_3d (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes_3d (:obj:`LiDARInstance3DBoxes`): Prediction
                  of bboxes, contains a tensor with shape
                  (num_instances, 7) or (num_instances, 9), and
                  the last 2 dimensions of 9 is
                  velocity.
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
        """
        rets = []
        for task_id, preds_dict in enumerate(preds_dicts):
            num_class_with_bg = self.num_classes[task_id]
            batch_size = preds_dict[0]['heatmap'].shape[0]
            batch_heatmap = preds_dict[0]['heatmap'].sigmoid()

            batch_reg = preds_dict[0]['reg']
            batch_hei = preds_dict[0]['height']

            if self.norm_bbox:
                batch_dim = torch.exp(preds_dict[0]['dim'])
            else:
                batch_dim = preds_dict[0]['dim']

            batch_rots = preds_dict[0]['rot'][:, 0].unsqueeze(1)
            batch_rotc = preds_dict[0]['rot'][:, 1].unsqueeze(1)

            if 'vel' in preds_dict[0]:
                batch_vel = preds_dict[0]['vel']
            else:
                batch_vel = None
            temp = self.bbox_coder.decode(
                batch_heatmap,
                batch_rots,
                batch_rotc,
                batch_hei,
                batch_dim,
                batch_vel,
                reg=batch_reg,
                task_id=task_id)
            assert self.test_cfg['nms_type'] in ['circle', 'rotate']
            batch_reg_preds = [box['bboxes'] for box in temp]
            batch_cls_preds = [box['scores'] for box in temp]
            batch_cls_labels = [box['labels'] for box in temp]
            if self.test_cfg['nms_type'] == 'circle':
                ret_task = []
                for i in range(batch_size):
                    boxes3d = temp[i]['bboxes']
                    scores = temp[i]['scores']
                    labels = temp[i]['labels']
                    centers = boxes3d[:, [0, 1]]
                    boxes = torch.cat([centers, scores.view(-1, 1)], dim=1)
                    keep = torch.tensor(
                        circle_nms(
                            boxes.detach().cpu().numpy(),
                            self.test_cfg['min_radius'][task_id],
                            post_max_size=self.test_cfg['post_max_size']),
                        dtype=torch.long,
                        device=boxes.device)

                    boxes3d = boxes3d[keep]
                    scores = scores[keep]
                    labels = labels[keep]
                    ret = dict(bboxes=boxes3d, scores=scores, labels=labels)
                    ret_task.append(ret)
                rets.append(ret_task)
            else:
                rets.append(
                    self.get_task_detections(num_class_with_bg,
                                             batch_cls_preds, batch_reg_preds,
jshilong's avatar
jshilong committed
782
783
                                             batch_cls_labels,
                                             batch_input_metas))
784
785
786
787
788
789

        # Merge branches results
        num_samples = len(rets[0])

        ret_list = []
        for i in range(num_samples):
jshilong's avatar
jshilong committed
790
            temp_instances = InstanceData()
791
792
793
794
            for k in rets[0][i].keys():
                if k == 'bboxes':
                    bboxes = torch.cat([ret[i][k] for ret in rets])
                    bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 5] * 0.5
jshilong's avatar
jshilong committed
795
                    bboxes = batch_input_metas[i]['box_type_3d'](
796
797
798
799
800
801
802
803
                        bboxes, self.bbox_coder.code_size)
                elif k == 'scores':
                    scores = torch.cat([ret[i][k] for ret in rets])
                elif k == 'labels':
                    flag = 0
                    for j, num_class in enumerate(self.num_classes):
                        rets[j][i][k] += flag
                        flag += num_class
804
                    labels = torch.cat([ret[i][k].int() for ret in rets])
jshilong's avatar
jshilong committed
805
806
807
808
            temp_instances.bboxes_3d = bboxes
            temp_instances.scores_3d = scores
            temp_instances.labels_3d = labels
            ret_list.append(temp_instances)
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
        return ret_list

    def get_task_detections(self, num_class_with_bg, batch_cls_preds,
                            batch_reg_preds, batch_cls_labels, img_metas):
        """Rotate nms for each task.

        Args:
            num_class_with_bg (int): Number of classes for the current task.
            batch_cls_preds (list[torch.Tensor]): Prediction score with the
                shape of [N].
            batch_reg_preds (list[torch.Tensor]): Prediction bbox with the
                shape of [N, 9].
            batch_cls_labels (list[torch.Tensor]): Prediction label with the
                shape of [N].
            img_metas (list[dict]): Meta information of each sample.

        Returns:
            list[dict[str: torch.Tensor]]: contains the following keys:

828
                -bboxes (torch.Tensor): Prediction bboxes after nms with the
829
                    shape of [N, 9].
830
                -scores (torch.Tensor): Prediction scores after nms with the
831
                    shape of [N].
832
                -labels (torch.Tensor): Prediction labels after nms with the
833
834
835
836
837
838
839
840
841
842
843
844
845
                    shape of [N].
        """
        predictions_dicts = []
        post_center_range = self.test_cfg['post_center_limit_range']
        if len(post_center_range) > 0:
            post_center_range = torch.tensor(
                post_center_range,
                dtype=batch_reg_preds[0].dtype,
                device=batch_reg_preds[0].device)

        for i, (box_preds, cls_preds, cls_labels) in enumerate(
                zip(batch_reg_preds, batch_cls_preds, batch_cls_labels)):

846
            # Apply NMS in bird eye view
847

848
            # get the highest score per prediction, then apply nms
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
            # to remove overlapped box.
            if num_class_with_bg == 1:
                top_scores = cls_preds.squeeze(-1)
                top_labels = torch.zeros(
                    cls_preds.shape[0],
                    device=cls_preds.device,
                    dtype=torch.long)

            else:
                top_labels = cls_labels.long()
                top_scores = cls_preds.squeeze(-1)

            if self.test_cfg['score_threshold'] > 0.0:
                thresh = torch.tensor(
                    [self.test_cfg['score_threshold']],
                    device=cls_preds.device).type_as(cls_preds)
                top_scores_keep = top_scores >= thresh
                top_scores = top_scores.masked_select(top_scores_keep)

            if top_scores.shape[0] != 0:
                if self.test_cfg['score_threshold'] > 0.0:
                    box_preds = box_preds[top_scores_keep]
                    top_labels = top_labels[top_scores_keep]

                boxes_for_nms = xywhr2xyxyr(img_metas[i]['box_type_3d'](
                    box_preds[:, :], self.bbox_coder.code_size).bev)
                # the nms in 3d detection just remove overlap boxes.

877
                selected = nms_bev(
878
879
                    boxes_for_nms,
                    top_scores,
880
                    thresh=self.test_cfg['nms_thr'],
881
                    pre_max_size=self.test_cfg['pre_max_size'],
882
                    post_max_size=self.test_cfg['post_max_size'])
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
            else:
                selected = []

            # if selected is not None:
            selected_boxes = box_preds[selected]
            selected_labels = top_labels[selected]
            selected_scores = top_scores[selected]

            # finally generate predictions.
            if selected_boxes.shape[0] != 0:
                box_preds = selected_boxes
                scores = selected_scores
                label_preds = selected_labels
                final_box_preds = box_preds
                final_scores = scores
                final_labels = label_preds
                if post_center_range is not None:
                    mask = (final_box_preds[:, :3] >=
                            post_center_range[:3]).all(1)
                    mask &= (final_box_preds[:, :3] <=
                             post_center_range[3:]).all(1)
                    predictions_dict = dict(
                        bboxes=final_box_preds[mask],
                        scores=final_scores[mask],
                        labels=final_labels[mask])
                else:
                    predictions_dict = dict(
                        bboxes=final_box_preds,
                        scores=final_scores,
                        labels=final_labels)
            else:
                dtype = batch_reg_preds[0].dtype
                device = batch_reg_preds[0].device
                predictions_dict = dict(
                    bboxes=torch.zeros([0, self.bbox_coder.code_size],
                                       dtype=dtype,
                                       device=device),
                    scores=torch.zeros([0], dtype=dtype, device=device),
                    labels=torch.zeros([0],
                                       dtype=top_labels.dtype,
                                       device=device))

            predictions_dicts.append(predictions_dict)
        return predictions_dicts