fcos_mono3d_head.py 40.5 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
from logging import warning

twang's avatar
twang committed
4
5
import numpy as np
import torch
Tai-Wang's avatar
Tai-Wang committed
6
from mmcv.cnn import Scale, normal_init
twang's avatar
twang committed
7
8
9
from mmcv.runner import force_fp32
from torch import nn as nn

10
11
from mmdet3d.core import (box3d_multiclass_nms, limit_period, points_img2cam,
                          xywhr2xyxyr)
12
13
from mmdet3d.models.builder import build_loss
from mmdet3d.registry import MODELS
twang's avatar
twang committed
14
from mmdet.core import multi_apply
Tai-Wang's avatar
Tai-Wang committed
15
from mmdet.core.bbox.builder import build_bbox_coder
twang's avatar
twang committed
16
17
18
19
20
from .anchor_free_mono3d_head import AnchorFreeMono3DHead

INF = 1e8


21
@MODELS.register_module()
twang's avatar
twang committed
22
23
24
25
26
27
28
class FCOSMono3DHead(AnchorFreeMono3DHead):
    """Anchor-free head used in FCOS3D.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
29
        regress_ranges (tuple[tuple[int, int]], optional): Regress range of multiple
twang's avatar
twang committed
30
            level points.
31
32
33
        center_sampling (bool, optional): If true, use center sampling. Default: True.
        center_sample_radius (float, optional): Radius of center sampling. Default: 1.5.
        norm_on_bbox (bool, optional): If true, normalize the regression targets
twang's avatar
twang committed
34
            with FPN strides. Default: True.
35
        centerness_on_reg (bool, optional): If true, position centerness on the
twang's avatar
twang committed
36
37
            regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042.
            Default: True.
38
39
40
41
42
43
44
45
        centerness_alpha (int, optional): Parameter used to adjust the intensity
            attenuation from the center to the periphery. Default: 2.5.
        loss_cls (dict, optional): Config of classification loss.
        loss_bbox (dict, optional): Config of localization loss.
        loss_dir (dict, optional): Config of direction classification loss.
        loss_attr (dict, optional): Config of attribute classification loss.
        loss_centerness (dict, optional): Config of centerness loss.
        norm_cfg (dict, optional): dictionary to construct and config norm layer.
twang's avatar
twang committed
46
            Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True).
47
        centerness_branch (tuple[int], optional): Channels for centerness branch.
twang's avatar
twang committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
            Default: (64, ).
    """  # noqa: E501

    def __init__(self,
                 regress_ranges=((-1, 48), (48, 96), (96, 192), (192, 384),
                                 (384, INF)),
                 center_sampling=True,
                 center_sample_radius=1.5,
                 norm_on_bbox=True,
                 centerness_on_reg=True,
                 centerness_alpha=2.5,
                 loss_cls=dict(
                     type='FocalLoss',
                     use_sigmoid=True,
                     gamma=2.0,
                     alpha=0.25,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
                 loss_dir=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=False,
                     loss_weight=1.0),
                 loss_attr=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=False,
                     loss_weight=1.0),
                 loss_centerness=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
Tai-Wang's avatar
Tai-Wang committed
79
                 bbox_coder=dict(type='FCOS3DBBoxCoder', code_size=9),
twang's avatar
twang committed
80
81
                 norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
                 centerness_branch=(64, ),
82
                 init_cfg=None,
twang's avatar
twang committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
                 **kwargs):
        self.regress_ranges = regress_ranges
        self.center_sampling = center_sampling
        self.center_sample_radius = center_sample_radius
        self.norm_on_bbox = norm_on_bbox
        self.centerness_on_reg = centerness_on_reg
        self.centerness_alpha = centerness_alpha
        self.centerness_branch = centerness_branch
        super().__init__(
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            loss_dir=loss_dir,
            loss_attr=loss_attr,
            norm_cfg=norm_cfg,
97
            init_cfg=init_cfg,
twang's avatar
twang committed
98
99
            **kwargs)
        self.loss_centerness = build_loss(loss_centerness)
Tai-Wang's avatar
Tai-Wang committed
100
101
        bbox_coder['code_size'] = self.bbox_code_size
        self.bbox_coder = build_bbox_coder(bbox_coder)
twang's avatar
twang committed
102
103
104
105
106
107
108
109

    def _init_layers(self):
        """Initialize layers of the head."""
        super()._init_layers()
        self.conv_centerness_prev = self._init_branch(
            conv_channels=self.centerness_branch,
            conv_strides=(1, ) * len(self.centerness_branch))
        self.conv_centerness = nn.Conv2d(self.centerness_branch[-1], 1, 1)
Tai-Wang's avatar
Tai-Wang committed
110
        self.scale_dim = 3  # only for offset, depth and size regression
twang's avatar
twang committed
111
        self.scales = nn.ModuleList([
Tai-Wang's avatar
Tai-Wang committed
112
113
114
            nn.ModuleList([Scale(1.0) for _ in range(self.scale_dim)])
            for _ in self.strides
        ])
twang's avatar
twang committed
115

Tai-Wang's avatar
Tai-Wang committed
116
117
118
119
120
121
122
123
124
125
126
127
128
    def init_weights(self):
        """Initialize weights of the head.

        We currently still use the customized init_weights because the default
        init of DCN triggered by the init_cfg will init conv_offset.weight,
        which mistakenly affects the training stability.
        """
        super().init_weights()
        for m in self.conv_centerness_prev:
            if isinstance(m.conv, nn.Conv2d):
                normal_init(m.conv, std=0.01)
        normal_init(self.conv_centerness, std=0.01)

twang's avatar
twang committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    def forward(self, feats):
        """Forward features from the upstream network.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple:
                cls_scores (list[Tensor]): Box scores for each scale level,
                    each is a 4D-tensor, the channel number is
                    num_points * num_classes.
                bbox_preds (list[Tensor]): Box energies / deltas for each scale
                    level, each is a 4D-tensor, the channel number is
                    num_points * bbox_code_size.
                dir_cls_preds (list[Tensor]): Box scores for direction class
                    predictions on each scale level, each is a 4D-tensor,
                    the channel number is num_points * 2. (bin = 2).
                attr_preds (list[Tensor]): Attribute scores for each scale
                    level, each is a 4D-tensor, the channel number is
                    num_points * num_attrs.
                centernesses (list[Tensor]): Centerness for each scale level,
                    each is a 4D-tensor, the channel number is num_points * 1.
        """
Tai-Wang's avatar
Tai-Wang committed
153
        # Note: we use [:5] to filter feats and only return predictions
twang's avatar
twang committed
154
        return multi_apply(self.forward_single, feats, self.scales,
Tai-Wang's avatar
Tai-Wang committed
155
                           self.strides)[:5]
twang's avatar
twang committed
156
157

    def forward_single(self, x, scale, stride):
158
        """Forward features of a single scale level.
twang's avatar
twang committed
159
160
161
162
163
164
165
166
167
168

        Args:
            x (Tensor): FPN feature maps of the specified stride.
            scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
                the bbox prediction.
            stride (int): The corresponding stride for feature maps, only
                used to normalize the bbox prediction when self.norm_on_bbox
                is True.

        Returns:
169
            tuple: scores for each class, bbox and direction class
twang's avatar
twang committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
                predictions, centerness predictions of input feature maps.
        """
        cls_score, bbox_pred, dir_cls_pred, attr_pred, cls_feat, reg_feat = \
            super().forward_single(x)

        if self.centerness_on_reg:
            clone_reg_feat = reg_feat.clone()
            for conv_centerness_prev_layer in self.conv_centerness_prev:
                clone_reg_feat = conv_centerness_prev_layer(clone_reg_feat)
            centerness = self.conv_centerness(clone_reg_feat)
        else:
            clone_cls_feat = cls_feat.clone()
            for conv_centerness_prev_layer in self.conv_centerness_prev:
                clone_cls_feat = conv_centerness_prev_layer(clone_cls_feat)
            centerness = self.conv_centerness(clone_cls_feat)

Tai-Wang's avatar
Tai-Wang committed
186
187
        bbox_pred = self.bbox_coder.decode(bbox_pred, scale, stride,
                                           self.training, cls_score)
twang's avatar
twang committed
188

Tai-Wang's avatar
Tai-Wang committed
189
190
        return cls_score, bbox_pred, dir_cls_pred, attr_pred, centerness, \
            cls_feat, reg_feat
twang's avatar
twang committed
191
192
193
194
195
196
197
198
199
200
201
202

    @staticmethod
    def add_sin_difference(boxes1, boxes2):
        """Convert the rotation difference to difference in sine function.

        Args:
            boxes1 (torch.Tensor): Original Boxes in shape (NxC), where C>=7
                and the 7th dimension is rotation dimension.
            boxes2 (torch.Tensor): Target boxes in shape (NxC), where C>=7 and
                the 7th dimension is rotation dimension.

        Returns:
203
            tuple[torch.Tensor]: ``boxes1`` and ``boxes2`` whose 7th
twang's avatar
twang committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
                dimensions are changed.
        """
        rad_pred_encoding = torch.sin(boxes1[..., 6:7]) * torch.cos(
            boxes2[..., 6:7])
        rad_tg_encoding = torch.cos(boxes1[..., 6:7]) * torch.sin(boxes2[...,
                                                                         6:7])
        boxes1 = torch.cat(
            [boxes1[..., :6], rad_pred_encoding, boxes1[..., 7:]], dim=-1)
        boxes2 = torch.cat([boxes2[..., :6], rad_tg_encoding, boxes2[..., 7:]],
                           dim=-1)
        return boxes1, boxes2

    @staticmethod
    def get_direction_target(reg_targets,
                             dir_offset=0,
219
                             dir_limit_offset=0.0,
twang's avatar
twang committed
220
221
222
223
224
225
                             num_bins=2,
                             one_hot=True):
        """Encode direction to 0 ~ num_bins-1.

        Args:
            reg_targets (torch.Tensor): Bbox regression targets.
226
227
228
229
230
231
232
            dir_offset (int, optional): Direction offset. Default to 0.
            dir_limit_offset (float, optional): Offset to set the direction
                range. Default to 0.0.
            num_bins (int, optional): Number of bins to divide 2*PI.
                Default to 2.
            one_hot (bool, optional): Whether to encode as one hot.
                Default to True.
twang's avatar
twang committed
233
234
235
236
237

        Returns:
            torch.Tensor: Encoded direction targets.
        """
        rot_gt = reg_targets[..., 6]
238
239
        offset_rot = limit_period(rot_gt - dir_offset, dir_limit_offset,
                                  2 * np.pi)
twang's avatar
twang committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        dir_cls_targets = torch.floor(offset_rot /
                                      (2 * np.pi / num_bins)).long()
        dir_cls_targets = torch.clamp(dir_cls_targets, min=0, max=num_bins - 1)
        if one_hot:
            dir_targets = torch.zeros(
                *list(dir_cls_targets.shape),
                num_bins,
                dtype=reg_targets.dtype,
                device=dir_cls_targets.device)
            dir_targets.scatter_(dir_cls_targets.unsqueeze(dim=-1).long(), 1.0)
            dir_cls_targets = dir_targets
        return dir_cls_targets

    @force_fp32(
        apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds', 'attr_preds',
                  'centernesses'))
    def loss(self,
             cls_scores,
             bbox_preds,
             dir_cls_preds,
             attr_preds,
             centernesses,
262
263
264
             batch_gt_instances_3d,
             batch_img_metas,
             batch_gt_instances_ignore=None):
twang's avatar
twang committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        """Compute loss of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_points * num_classes.
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_points * bbox_code_size.
            dir_cls_preds (list[Tensor]): Box scores for direction class
                predictions on each scale level, each is a 4D-tensor,
                the channel number is num_points * 2. (bin = 2)
            attr_preds (list[Tensor]): Attribute scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_points * num_attrs.
            centernesses (list[Tensor]): Centerness for each scale level, each
                is a 4D-tensor, the channel number is num_points * 1.
282
283
284
285
286
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instance_3d.  It usually includes ``bboxes``、``labels``
                、``bboxes_3d``、``labels3d``、``depths``、``centers2d`` and
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
twang's avatar
twang committed
287
                image size, scaling factor, etc.
288
289
290
291
            batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
twang's avatar
twang committed
292
293
294
295
296
297
298
299
300
301

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert len(cls_scores) == len(bbox_preds) == len(centernesses) == len(
            attr_preds)
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        all_level_points = self.get_points(featmap_sizes, bbox_preds[0].dtype,
                                           bbox_preds[0].device)
        labels_3d, bbox_targets_3d, centerness_targets, attr_targets = \
302
            self.get_targets(all_level_points, batch_gt_instances_3d)
twang's avatar
twang committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

        num_imgs = cls_scores[0].size(0)
        # flatten cls_scores, bbox_preds, dir_cls_preds and centerness
        flatten_cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
            for cls_score in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(-1, sum(self.group_reg_dims))
            for bbox_pred in bbox_preds
        ]
        flatten_dir_cls_preds = [
            dir_cls_pred.permute(0, 2, 3, 1).reshape(-1, 2)
            for dir_cls_pred in dir_cls_preds
        ]
        flatten_centerness = [
            centerness.permute(0, 2, 3, 1).reshape(-1)
            for centerness in centernesses
        ]
        flatten_cls_scores = torch.cat(flatten_cls_scores)
        flatten_bbox_preds = torch.cat(flatten_bbox_preds)
        flatten_dir_cls_preds = torch.cat(flatten_dir_cls_preds)
        flatten_centerness = torch.cat(flatten_centerness)
        flatten_labels_3d = torch.cat(labels_3d)
        flatten_bbox_targets_3d = torch.cat(bbox_targets_3d)
        flatten_centerness_targets = torch.cat(centerness_targets)

        # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
        bg_class_ind = self.num_classes
        pos_inds = ((flatten_labels_3d >= 0)
                    & (flatten_labels_3d < bg_class_ind)).nonzero().reshape(-1)
        num_pos = len(pos_inds)

        loss_cls = self.loss_cls(
            flatten_cls_scores,
            flatten_labels_3d,
            avg_factor=num_pos + num_imgs)  # avoid num_pos is 0

        pos_bbox_preds = flatten_bbox_preds[pos_inds]
        pos_dir_cls_preds = flatten_dir_cls_preds[pos_inds]
        pos_centerness = flatten_centerness[pos_inds]

        if self.pred_attrs:
            flatten_attr_preds = [
                attr_pred.permute(0, 2, 3, 1).reshape(-1, self.num_attrs)
                for attr_pred in attr_preds
            ]
            flatten_attr_preds = torch.cat(flatten_attr_preds)
            flatten_attr_targets = torch.cat(attr_targets)
            pos_attr_preds = flatten_attr_preds[pos_inds]

        if num_pos > 0:
            pos_bbox_targets_3d = flatten_bbox_targets_3d[pos_inds]
            pos_centerness_targets = flatten_centerness_targets[pos_inds]
            if self.pred_attrs:
                pos_attr_targets = flatten_attr_targets[pos_inds]
            bbox_weights = pos_centerness_targets.new_ones(
                len(pos_centerness_targets), sum(self.group_reg_dims))
            equal_weights = pos_centerness_targets.new_ones(
                pos_centerness_targets.shape)

            code_weight = self.train_cfg.get('code_weight', None)
            if code_weight:
                assert len(code_weight) == sum(self.group_reg_dims)
                bbox_weights = bbox_weights * bbox_weights.new_tensor(
                    code_weight)

            if self.use_direction_classifier:
                pos_dir_cls_targets = self.get_direction_target(
372
373
374
375
                    pos_bbox_targets_3d,
                    self.dir_offset,
                    self.dir_limit_offset,
                    one_hot=False)
twang's avatar
twang committed
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

            if self.diff_rad_by_sin:
                pos_bbox_preds, pos_bbox_targets_3d = self.add_sin_difference(
                    pos_bbox_preds, pos_bbox_targets_3d)

            loss_offset = self.loss_bbox(
                pos_bbox_preds[:, :2],
                pos_bbox_targets_3d[:, :2],
                weight=bbox_weights[:, :2],
                avg_factor=equal_weights.sum())
            loss_depth = self.loss_bbox(
                pos_bbox_preds[:, 2],
                pos_bbox_targets_3d[:, 2],
                weight=bbox_weights[:, 2],
                avg_factor=equal_weights.sum())
            loss_size = self.loss_bbox(
                pos_bbox_preds[:, 3:6],
                pos_bbox_targets_3d[:, 3:6],
                weight=bbox_weights[:, 3:6],
                avg_factor=equal_weights.sum())
            loss_rotsin = self.loss_bbox(
                pos_bbox_preds[:, 6],
                pos_bbox_targets_3d[:, 6],
                weight=bbox_weights[:, 6],
                avg_factor=equal_weights.sum())
            loss_velo = None
            if self.pred_velo:
                loss_velo = self.loss_bbox(
                    pos_bbox_preds[:, 7:9],
                    pos_bbox_targets_3d[:, 7:9],
                    weight=bbox_weights[:, 7:9],
                    avg_factor=equal_weights.sum())

            loss_centerness = self.loss_centerness(pos_centerness,
                                                   pos_centerness_targets)

            # direction classification loss
            loss_dir = None
            # TODO: add more check for use_direction_classifier
            if self.use_direction_classifier:
                loss_dir = self.loss_dir(
                    pos_dir_cls_preds,
                    pos_dir_cls_targets,
                    equal_weights,
                    avg_factor=equal_weights.sum())

            # attribute classification loss
            loss_attr = None
            if self.pred_attrs:
                loss_attr = self.loss_attr(
                    pos_attr_preds,
                    pos_attr_targets,
                    pos_centerness_targets,
                    avg_factor=pos_centerness_targets.sum())

        else:
            # need absolute due to possible negative delta x/y
            loss_offset = pos_bbox_preds[:, :2].sum()
            loss_depth = pos_bbox_preds[:, 2].sum()
            loss_size = pos_bbox_preds[:, 3:6].sum()
            loss_rotsin = pos_bbox_preds[:, 6].sum()
            loss_velo = None
            if self.pred_velo:
                loss_velo = pos_bbox_preds[:, 7:9].sum()
            loss_centerness = pos_centerness.sum()
            loss_dir = None
            if self.use_direction_classifier:
                loss_dir = pos_dir_cls_preds.sum()
            loss_attr = None
            if self.pred_attrs:
                loss_attr = pos_attr_preds.sum()

        loss_dict = dict(
            loss_cls=loss_cls,
            loss_offset=loss_offset,
            loss_depth=loss_depth,
            loss_size=loss_size,
            loss_rotsin=loss_rotsin,
            loss_centerness=loss_centerness)

        if loss_velo is not None:
            loss_dict['loss_velo'] = loss_velo

        if loss_dir is not None:
            loss_dict['loss_dir'] = loss_dir

        if loss_attr is not None:
            loss_dict['loss_attr'] = loss_attr

        return loss_dict

    @force_fp32(
        apply_to=('cls_scores', 'bbox_preds', 'dir_cls_preds', 'attr_preds',
                  'centernesses'))
    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   dir_cls_preds,
                   attr_preds,
                   centernesses,
                   img_metas,
                   cfg=None,
                   rescale=None):
        """Transform network output for a batch into bbox predictions.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_points * num_classes, H, W)
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_points * 4, H, W)
            dir_cls_preds (list[Tensor]): Box scores for direction class
                predictions on each scale level, each is a 4D-tensor,
                the channel number is num_points * 2. (bin = 2)
            attr_preds (list[Tensor]): Attribute scores for each scale level
                Has shape (N, num_points * num_attrs, H, W)
            centernesses (list[Tensor]): Centerness for each scale level with
                shape (N, num_points * 1, H, W)
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used
            rescale (bool): If True, return boxes in original image space

        Returns:
500
501
502
503
504
            list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is an (n, 5) tensor, where the first 4 columns
                are bounding box positions (tl_x, tl_y, br_x, br_y) and the
                5-th column is a score between 0 and 1. The second item is a
                (n,) tensor where each item is the predicted class label of
twang's avatar
twang committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
                the corresponding box.
        """
        assert len(cls_scores) == len(bbox_preds) == len(dir_cls_preds) == \
            len(centernesses) == len(attr_preds)
        num_levels = len(cls_scores)

        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        mlvl_points = self.get_points(featmap_sizes, bbox_preds[0].dtype,
                                      bbox_preds[0].device)
        result_list = []
        for img_id in range(len(img_metas)):
            cls_score_list = [
                cls_scores[i][img_id].detach() for i in range(num_levels)
            ]
            bbox_pred_list = [
                bbox_preds[i][img_id].detach() for i in range(num_levels)
            ]
            if self.use_direction_classifier:
                dir_cls_pred_list = [
                    dir_cls_preds[i][img_id].detach()
                    for i in range(num_levels)
                ]
            else:
                dir_cls_pred_list = [
                    cls_scores[i][img_id].new_full(
                        [2, *cls_scores[i][img_id].shape[1:]], 0).detach()
                    for i in range(num_levels)
                ]
            if self.pred_attrs:
                attr_pred_list = [
                    attr_preds[i][img_id].detach() for i in range(num_levels)
                ]
            else:
                attr_pred_list = [
                    cls_scores[i][img_id].new_full(
                        [self.num_attrs, *cls_scores[i][img_id].shape[1:]],
                        self.attr_background_label).detach()
                    for i in range(num_levels)
                ]
            centerness_pred_list = [
                centernesses[i][img_id].detach() for i in range(num_levels)
            ]
            input_meta = img_metas[img_id]
            det_bboxes = self._get_bboxes_single(
                cls_score_list, bbox_pred_list, dir_cls_pred_list,
                attr_pred_list, centerness_pred_list, mlvl_points, input_meta,
                cfg, rescale)
            result_list.append(det_bboxes)
        return result_list

    def _get_bboxes_single(self,
                           cls_scores,
                           bbox_preds,
                           dir_cls_preds,
                           attr_preds,
                           centernesses,
                           mlvl_points,
                           input_meta,
                           cfg,
                           rescale=False):
        """Transform outputs for a single batch item into bbox predictions.

        Args:
            cls_scores (list[Tensor]): Box scores for a single scale level
                Has shape (num_points * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for a single scale
                level with shape (num_points * bbox_code_size, H, W).
            dir_cls_preds (list[Tensor]): Box scores for direction class
573
                predictions on a single scale level with shape
twang's avatar
twang committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
                (num_points * 2, H, W)
            attr_preds (list[Tensor]): Attribute scores for each scale level
                Has shape (N, num_points * num_attrs, H, W)
            centernesses (list[Tensor]): Centerness for a single scale level
                with shape (num_points, H, W).
            mlvl_points (list[Tensor]): Box reference for a single scale level
                with shape (num_total_points, 2).
            input_meta (dict): Metadata of input image.
            cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.

        Returns:
            tuples[Tensor]: Predicted 3D boxes, scores, labels and attributes.
        """
589
        view = np.array(input_meta['cam2img'])
twang's avatar
twang committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
        scale_factor = input_meta['scale_factor']
        cfg = self.test_cfg if cfg is None else cfg
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_points)
        mlvl_centers2d = []
        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_dir_scores = []
        mlvl_attr_scores = []
        mlvl_centerness = []

        for cls_score, bbox_pred, dir_cls_pred, attr_pred, centerness, \
                points in zip(cls_scores, bbox_preds, dir_cls_preds,
                              attr_preds, centernesses, mlvl_points):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
            scores = cls_score.permute(1, 2, 0).reshape(
                -1, self.cls_out_channels).sigmoid()
            dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2)
            dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1]
            attr_pred = attr_pred.permute(1, 2, 0).reshape(-1, self.num_attrs)
            attr_score = torch.max(attr_pred, dim=-1)[1]
            centerness = centerness.permute(1, 2, 0).reshape(-1).sigmoid()

            bbox_pred = bbox_pred.permute(1, 2,
                                          0).reshape(-1,
                                                     sum(self.group_reg_dims))
            bbox_pred = bbox_pred[:, :self.bbox_code_size]
            nms_pre = cfg.get('nms_pre', -1)
            if nms_pre > 0 and scores.shape[0] > nms_pre:
                max_scores, _ = (scores * centerness[:, None]).max(dim=1)
                _, topk_inds = max_scores.topk(nms_pre)
                points = points[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                scores = scores[topk_inds, :]
                dir_cls_pred = dir_cls_pred[topk_inds, :]
                centerness = centerness[topk_inds]
                dir_cls_score = dir_cls_score[topk_inds]
                attr_score = attr_score[topk_inds]
            # change the offset to actual center predictions
            bbox_pred[:, :2] = points - bbox_pred[:, :2]
            if rescale:
                bbox_pred[:, :2] /= bbox_pred[:, :2].new_tensor(scale_factor)
            pred_center2d = bbox_pred[:, :3].clone()
632
            bbox_pred[:, :3] = points_img2cam(bbox_pred[:, :3], view)
twang's avatar
twang committed
633
634
635
636
637
638
639
640
641
642
643
644
            mlvl_centers2d.append(pred_center2d)
            mlvl_bboxes.append(bbox_pred)
            mlvl_scores.append(scores)
            mlvl_dir_scores.append(dir_cls_score)
            mlvl_attr_scores.append(attr_score)
            mlvl_centerness.append(centerness)

        mlvl_centers2d = torch.cat(mlvl_centers2d)
        mlvl_bboxes = torch.cat(mlvl_bboxes)
        mlvl_dir_scores = torch.cat(mlvl_dir_scores)

        # change local yaw to global yaw for 3D nms
Tai-Wang's avatar
Tai-Wang committed
645
646
        cam2img = mlvl_centers2d.new_zeros((4, 4))
        cam2img[:view.shape[0], :view.shape[1]] = \
twang's avatar
twang committed
647
            mlvl_centers2d.new_tensor(view)
Tai-Wang's avatar
Tai-Wang committed
648
649
650
651
        mlvl_bboxes = self.bbox_coder.decode_yaw(mlvl_bboxes, mlvl_centers2d,
                                                 mlvl_dir_scores,
                                                 self.dir_offset, cam2img)

twang's avatar
twang committed
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
        mlvl_bboxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d'](
            mlvl_bboxes, box_dim=self.bbox_code_size,
            origin=(0.5, 0.5, 0.5)).bev)

        mlvl_scores = torch.cat(mlvl_scores)
        padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
        # remind that we set FG labels to [0, num_class-1] since mmdet v2.0
        # BG cat_id: num_class
        mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)
        mlvl_attr_scores = torch.cat(mlvl_attr_scores)
        mlvl_centerness = torch.cat(mlvl_centerness)
        # no scale_factors in box3d_multiclass_nms
        # Then we multiply it from outside
        mlvl_nms_scores = mlvl_scores * mlvl_centerness[:, None]
        results = box3d_multiclass_nms(mlvl_bboxes, mlvl_bboxes_for_nms,
                                       mlvl_nms_scores, cfg.score_thr,
                                       cfg.max_per_img, cfg, mlvl_dir_scores,
                                       mlvl_attr_scores)
        bboxes, scores, labels, dir_scores, attrs = results
        attrs = attrs.to(labels.dtype)  # change data type to int
672
673
        bboxes = input_meta['box_type_3d'](
            bboxes, box_dim=self.bbox_code_size, origin=(0.5, 0.5, 0.5))
twang's avatar
twang committed
674
675
        # Note that the predictions use origin (0.5, 0.5, 0.5)
        # Due to the ground truth centers2d are the gravity center of objects
676
677
        # v0.10.0 fix inplace operation to the input tensor of cam_box3d
        # So here we also need to add origin=(0.5, 0.5, 0.5)
twang's avatar
twang committed
678
679
680
681
682
683
684
685
686
        if not self.pred_attrs:
            attrs = None

        return bboxes, scores, labels, attrs

    @staticmethod
    def pts2Dto3D(points, view):
        """
        Args:
687
            points (torch.Tensor): points in 2D images, [N, 3],
twang's avatar
twang committed
688
                3 corresponds with x, y in the image and depth.
689
            view (np.ndarray): camera intrinsic, [3, 3]
twang's avatar
twang committed
690
691

        Returns:
692
            torch.Tensor: points in 3D space. [N, 3],
twang's avatar
twang committed
693
694
                3 corresponds with x, y, z in 3D space.
        """
695
696
697
698
        warning.warn('DeprecationWarning: This static method has been moved '
                     'out of this class to mmdet3d/core. The function '
                     'pts2Dto3D will be deprecated.')

twang's avatar
twang committed
699
700
701
702
703
704
705
706
707
708
709
710
        assert view.shape[0] <= 4
        assert view.shape[1] <= 4
        assert points.shape[1] == 3

        points2D = points[:, :2]
        depths = points[:, 2].view(-1, 1)
        unnorm_points2D = torch.cat([points2D * depths, depths], dim=1)

        viewpad = torch.eye(4, dtype=points2D.dtype, device=points2D.device)
        viewpad[:view.shape[0], :view.shape[1]] = points2D.new_tensor(view)
        inv_viewpad = torch.inverse(viewpad).transpose(0, 1)

711
        # Do operation in homogeneous coordinates.
twang's avatar
twang committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
        nbr_points = unnorm_points2D.shape[0]
        homo_points2D = torch.cat(
            [unnorm_points2D,
             points2D.new_ones((nbr_points, 1))], dim=1)
        points3D = torch.mm(homo_points2D, inv_viewpad)[:, :3]

        return points3D

    def _get_points_single(self,
                           featmap_size,
                           stride,
                           dtype,
                           device,
                           flatten=False):
        """Get points according to feature map sizes."""
        y, x = super()._get_points_single(featmap_size, stride, dtype, device)
        points = torch.stack((x.reshape(-1) * stride, y.reshape(-1) * stride),
                             dim=-1) + stride // 2
        return points

732
    def get_targets(self, points, batch_gt_instances_3d):
twang's avatar
twang committed
733
734
735
736
737
738
        """Compute regression, classification and centerss targets for points
        in multiple images.

        Args:
            points (list[Tensor]): Points of each fpn level, each has shape
                (num_points, 2).
739
740
741
742
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instance_3d.  It usually includes ``bboxes``、``labels``
                、``bboxes_3d``、``labels3d``、``depths``、``centers2d`` and
                attributes.
twang's avatar
twang committed
743
744
745

        Returns:
            tuple:
746
747
                concat_lvl_labels (list[Tensor]): Labels of each level.
                concat_lvl_bbox_targets (list[Tensor]): BBox targets of each
twang's avatar
twang committed
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
                    level.
        """
        assert len(points) == len(self.regress_ranges)
        num_levels = len(points)
        # expand regress ranges to align with points
        expanded_regress_ranges = [
            points[i].new_tensor(self.regress_ranges[i])[None].expand_as(
                points[i]) for i in range(num_levels)
        ]
        # concat all levels points and regress ranges
        concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0)
        concat_points = torch.cat(points, dim=0)

        # the number of points per img, per lvl
        num_points = [center.size(0) for center in points]

        # get labels and bbox_targets of each image
        _, _, labels_3d_list, bbox_targets_3d_list, centerness_targets_list, \
            attr_targets_list = multi_apply(
                self._get_target_single,
768
                batch_gt_instances_3d,
twang's avatar
twang committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
                points=concat_points,
                regress_ranges=concat_regress_ranges,
                num_points_per_lvl=num_points)

        # split to per img, per level
        labels_3d_list = [
            labels_3d.split(num_points, 0) for labels_3d in labels_3d_list
        ]
        bbox_targets_3d_list = [
            bbox_targets_3d.split(num_points, 0)
            for bbox_targets_3d in bbox_targets_3d_list
        ]
        centerness_targets_list = [
            centerness_targets.split(num_points, 0)
            for centerness_targets in centerness_targets_list
        ]
        attr_targets_list = [
            attr_targets.split(num_points, 0)
            for attr_targets in attr_targets_list
        ]

        # concat per level image
        concat_lvl_labels_3d = []
        concat_lvl_bbox_targets_3d = []
        concat_lvl_centerness_targets = []
        concat_lvl_attr_targets = []
        for i in range(num_levels):
            concat_lvl_labels_3d.append(
                torch.cat([labels[i] for labels in labels_3d_list]))
            concat_lvl_centerness_targets.append(
                torch.cat([
                    centerness_targets[i]
                    for centerness_targets in centerness_targets_list
                ]))
            bbox_targets_3d = torch.cat([
                bbox_targets_3d[i] for bbox_targets_3d in bbox_targets_3d_list
            ])
            concat_lvl_attr_targets.append(
                torch.cat(
                    [attr_targets[i] for attr_targets in attr_targets_list]))
            if self.norm_on_bbox:
                bbox_targets_3d[:, :
                                2] = bbox_targets_3d[:, :2] / self.strides[i]
            concat_lvl_bbox_targets_3d.append(bbox_targets_3d)
        return concat_lvl_labels_3d, concat_lvl_bbox_targets_3d, \
            concat_lvl_centerness_targets, concat_lvl_attr_targets

816
817
    def _get_target_single(self, gt_instances_3d, points, regress_ranges,
                           num_points_per_lvl):
twang's avatar
twang committed
818
819
        """Compute regression and classification targets for a single image."""
        num_points = points.size(0)
820
821
822
823
824
825
826
827
828
        num_gts = len(gt_instances_3d)
        gt_bboxes = gt_instances_3d.bboxes
        gt_labels = gt_instances_3d.labels
        gt_bboxes_3d = gt_instances_3d.bboxes_3d
        gt_labels_3d = gt_instances_3d.labels_3d
        centers2d = gt_instances_3d.centers2d
        depths = gt_instances_3d.depths
        attr_labels = gt_instances_3d.attr_labels

twang's avatar
twang committed
829
830
831
832
833
834
835
836
837
838
839
840
        if not isinstance(gt_bboxes_3d, torch.Tensor):
            gt_bboxes_3d = gt_bboxes_3d.tensor.to(gt_bboxes.device)
        if num_gts == 0:
            return gt_labels.new_full((num_points,), self.background_label), \
                   gt_bboxes.new_zeros((num_points, 4)), \
                   gt_labels_3d.new_full(
                       (num_points,), self.background_label), \
                   gt_bboxes_3d.new_zeros((num_points, self.bbox_code_size)), \
                   gt_bboxes_3d.new_zeros((num_points,)), \
                   attr_labels.new_full(
                       (num_points,), self.attr_background_label)

841
842
843
844
        # change orientation to local yaw
        gt_bboxes_3d[..., 6] = -torch.atan2(
            gt_bboxes_3d[..., 0], gt_bboxes_3d[..., 2]) + gt_bboxes_3d[..., 6]

twang's avatar
twang committed
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
        areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
            gt_bboxes[:, 3] - gt_bboxes[:, 1])
        areas = areas[None].repeat(num_points, 1)
        regress_ranges = regress_ranges[:, None, :].expand(
            num_points, num_gts, 2)
        gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4)
        centers2d = centers2d[None].expand(num_points, num_gts, 2)
        gt_bboxes_3d = gt_bboxes_3d[None].expand(num_points, num_gts,
                                                 self.bbox_code_size)
        depths = depths[None, :, None].expand(num_points, num_gts, 1)
        xs, ys = points[:, 0], points[:, 1]
        xs = xs[:, None].expand(num_points, num_gts)
        ys = ys[:, None].expand(num_points, num_gts)

        delta_xs = (xs - centers2d[..., 0])[..., None]
        delta_ys = (ys - centers2d[..., 1])[..., None]
        bbox_targets_3d = torch.cat(
            (delta_xs, delta_ys, depths, gt_bboxes_3d[..., 3:]), dim=-1)

        left = xs - gt_bboxes[..., 0]
        right = gt_bboxes[..., 2] - xs
        top = ys - gt_bboxes[..., 1]
        bottom = gt_bboxes[..., 3] - ys
        bbox_targets = torch.stack((left, top, right, bottom), -1)

        assert self.center_sampling is True, 'Setting center_sampling to '\
            'False has not been implemented for FCOS3D.'
        # condition1: inside a `center bbox`
        radius = self.center_sample_radius
        center_xs = centers2d[..., 0]
        center_ys = centers2d[..., 1]
        center_gts = torch.zeros_like(gt_bboxes)
        stride = center_xs.new_zeros(center_xs.shape)

        # project the points on current lvl back to the `original` sizes
        lvl_begin = 0
        for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl):
            lvl_end = lvl_begin + num_points_lvl
            stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius
            lvl_begin = lvl_end

        center_gts[..., 0] = center_xs - stride
        center_gts[..., 1] = center_ys - stride
        center_gts[..., 2] = center_xs + stride
        center_gts[..., 3] = center_ys + stride

        cb_dist_left = xs - center_gts[..., 0]
        cb_dist_right = center_gts[..., 2] - xs
        cb_dist_top = ys - center_gts[..., 1]
        cb_dist_bottom = center_gts[..., 3] - ys
        center_bbox = torch.stack(
            (cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1)
        inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0

        # condition2: limit the regression range for each location
        max_regress_distance = bbox_targets.max(-1)[0]
        inside_regress_range = (
            (max_regress_distance >= regress_ranges[..., 0])
            & (max_regress_distance <= regress_ranges[..., 1]))

        # center-based criterion to deal with ambiguity
        dists = torch.sqrt(torch.sum(bbox_targets_3d[..., :2]**2, dim=-1))
        dists[inside_gt_bbox_mask == 0] = INF
        dists[inside_regress_range == 0] = INF
        min_dist, min_dist_inds = dists.min(dim=1)

        labels = gt_labels[min_dist_inds]
        labels_3d = gt_labels_3d[min_dist_inds]
        attr_labels = attr_labels[min_dist_inds]
        labels[min_dist == INF] = self.background_label  # set as BG
        labels_3d[min_dist == INF] = self.background_label  # set as BG
        attr_labels[min_dist == INF] = self.attr_background_label

        bbox_targets = bbox_targets[range(num_points), min_dist_inds]
        bbox_targets_3d = bbox_targets_3d[range(num_points), min_dist_inds]
        relative_dists = torch.sqrt(
            torch.sum(bbox_targets_3d[..., :2]**2,
                      dim=-1)) / (1.414 * stride[:, 0])
        # [N, 1] / [N, 1]
        centerness_targets = torch.exp(-self.centerness_alpha * relative_dists)

        return labels, bbox_targets, labels_3d, bbox_targets_3d, \
            centerness_targets, attr_labels