waymo_converter.py 30.1 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
Wenwei Zhang's avatar
Wenwei Zhang committed
2
3
4
5
r"""Adapted from `Waymo to KITTI converter
    <https://github.com/caizhongang/waymo_kitti_converter>`_.
"""

6
7
8
try:
    from waymo_open_dataset import dataset_pb2
except ImportError:
Jingwei Zhang's avatar
Jingwei Zhang committed
9
    raise ImportError('Please run "pip install waymo-open-dataset-tf-2-6-0" '
10
                      '>1.4.5 to install the official devkit first.')
11

12
import copy
13
import os
14
import os.path as osp
15
from glob import glob
16
from io import BytesIO
17
from os.path import exists, join
18

19
import mmengine
Wenwei Zhang's avatar
Wenwei Zhang committed
20
21
import numpy as np
import tensorflow as tf
22
23
24
from mmengine import print_log
from nuscenes.utils.geometry_utils import view_points
from PIL import Image
Wenwei Zhang's avatar
Wenwei Zhang committed
25
26
27
28
from waymo_open_dataset.utils import range_image_utils, transform_utils
from waymo_open_dataset.utils.frame_utils import \
    parse_range_image_and_camera_projection

29
30
31
from mmdet3d.datasets.convert_utils import post_process_coords
from mmdet3d.structures import Box3DMode, LiDARInstance3DBoxes, points_cam2img

Wenwei Zhang's avatar
Wenwei Zhang committed
32
33

class Waymo2KITTI(object):
34
    """Waymo to KITTI converter. There are 2 steps as follows:
Wenwei Zhang's avatar
Wenwei Zhang committed
35

36
37
38
    Step 1. Extract camera images and lidar point clouds from waymo raw data in
        '*.tfreord' and save as kitti format.
    Step 2. Generate waymo train/val/test infos and save as pickle file.
Wenwei Zhang's avatar
Wenwei Zhang committed
39
40
41
42
43
44

    Args:
        load_dir (str): Directory to load waymo raw data.
        save_dir (str): Directory to save data in KITTI format.
        prefix (str): Prefix of filename. In general, 0 for training, 1 for
            validation and 2 for testing.
45
        workers (int, optional): Number of workers for the parallel process.
46
47
48
            Defaults to 64.
        test_mode (bool, optional): Whether in the test_mode.
            Defaults to False.
49
50
51
52
53
54
55
56
57
58
        save_senor_data (bool, optional): Whether to save image and lidar
            data. Defaults to True.
        save_cam_sync_instances (bool, optional): Whether to save cam sync
            instances. Defaults to True.
        save_cam_instances (bool, optional): Whether to save cam instances.
            Defaults to False.
        info_prefix (str, optional): Prefix of info filename.
            Defaults to 'waymo'.
        max_sweeps (int, optional): Max length of sweeps. Defaults to 10.
        split (str, optional): Split of the data. Defaults to 'training'.
Wenwei Zhang's avatar
Wenwei Zhang committed
59
60
61
62
63
64
65
    """

    def __init__(self,
                 load_dir,
                 save_dir,
                 prefix,
                 workers=64,
66
                 test_mode=False,
67
68
69
70
71
72
                 save_senor_data=True,
                 save_cam_sync_instances=True,
                 save_cam_instances=True,
                 info_prefix='waymo',
                 max_sweeps=10,
                 split='training'):
Wenwei Zhang's avatar
Wenwei Zhang committed
73
74
75
76
        # turn on eager execution for older tensorflow versions
        if int(tf.__version__.split('.')[0]) < 2:
            tf.enable_eager_execution()

77
78
79
80
81
82
83
84
        # keep the order defined by the official protocol
        self.cam_list = [
            '_FRONT',
            '_FRONT_LEFT',
            '_FRONT_RIGHT',
            '_SIDE_LEFT',
            '_SIDE_RIGHT',
        ]
85
        self.lidar_list = ['TOP', 'FRONT', 'SIDE_LEFT', 'SIDE_RIGHT', 'REAR']
Wenwei Zhang's avatar
Wenwei Zhang committed
86
87
88
        self.type_list = [
            'UNKNOWN', 'VEHICLE', 'PEDESTRIAN', 'SIGN', 'CYCLIST'
        ]
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

        # MMDetection3D unified camera keys & class names
        self.camera_types = [
            'CAM_FRONT',
            'CAM_FRONT_LEFT',
            'CAM_FRONT_RIGHT',
            'CAM_SIDE_LEFT',
            'CAM_SIDE_RIGHT',
        ]
        self.selected_waymo_classes = ['VEHICLE', 'PEDESTRIAN', 'CYCLIST']
        self.info_map = {
            'training': '_infos_train.pkl',
            'validation': '_infos_val.pkl',
            'testing': '_infos_test.pkl',
            'testing_3d_camera_only_detection': '_infos_test_cam_only.pkl'
Wenwei Zhang's avatar
Wenwei Zhang committed
104
105
106
107
108
109
110
        }

        self.load_dir = load_dir
        self.save_dir = save_dir
        self.prefix = prefix
        self.workers = int(workers)
        self.test_mode = test_mode
111
112
113
114
115
116
117
118
119
120
121
        self.save_senor_data = save_senor_data
        self.save_cam_sync_instances = save_cam_sync_instances
        self.save_cam_instances = save_cam_instances
        self.info_prefix = info_prefix
        self.max_sweeps = max_sweeps
        self.split = split

        # TODO: Discuss filter_empty_3dboxes and filter_no_label_zone_points
        self.filter_empty_3dboxes = True
        self.filter_no_label_zone_points = True
        self.save_track_id = False
Wenwei Zhang's avatar
Wenwei Zhang committed
122
123
124
125
126
127
128

        self.tfrecord_pathnames = sorted(
            glob(join(self.load_dir, '*.tfrecord')))

        self.image_save_dir = f'{self.save_dir}/image_'
        self.point_cloud_save_dir = f'{self.save_dir}/velodyne'

129
130
131
132
133
134
        # Create folder for saving KITTI format camera images and
        # lidar point clouds.
        if 'testing_3d_camera_only_detection' not in self.load_dir:
            mmengine.mkdir_or_exist(self.point_cloud_save_dir)
        for i in range(5):
            mmengine.mkdir_or_exist(f'{self.image_save_dir}{str(i)}')
Wenwei Zhang's avatar
Wenwei Zhang committed
135
136
137

    def convert(self):
        """Convert action."""
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        print_log(f'Start converting {self.split} dataset', logger='current')
        if self.workers == 0:
            data_infos = mmengine.track_progress(self.convert_one,
                                                 range(len(self)))
        else:
            data_infos = mmengine.track_parallel_progress(
                self.convert_one, range(len(self)), self.workers)
        data_list = []
        for data_info in data_infos:
            data_list.extend(data_info)
        metainfo = dict()
        metainfo['dataset'] = 'waymo'
        metainfo['version'] = 'waymo_v1.4'
        metainfo['info_version'] = 'mmdet3d_v1.4'
        waymo_infos = dict(data_list=data_list, metainfo=metainfo)
        filenames = osp.join(
            osp.dirname(self.save_dir),
            f'{self.info_prefix + self.info_map[self.split]}')
        print_log(f'Saving {self.split} dataset infos into {filenames}')
        mmengine.dump(waymo_infos, filenames)
Wenwei Zhang's avatar
Wenwei Zhang committed
158
159

    def convert_one(self, file_idx):
160
161
162
163
        """Convert one '*.tfrecord' file to kitti format. Each file stores all
        the frames (about 200 frames) in current scene. We treat each frame as
        a sample, save their images and point clouds in kitti format, and then
        create info for all frames.
Wenwei Zhang's avatar
Wenwei Zhang committed
164
165
166

        Args:
            file_idx (int): Index of the file to be converted.
167
168
169

        Returns:
            List[dict]: Waymo infos for all frames in current file.
Wenwei Zhang's avatar
Wenwei Zhang committed
170
171
172
173
        """
        pathname = self.tfrecord_pathnames[file_idx]
        dataset = tf.data.TFRecordDataset(pathname, compression_type='')

174
175
176
        # NOTE: file_infos is not shared between processes, only stores frame
        # infos within the current file.
        file_infos = []
Wenwei Zhang's avatar
Wenwei Zhang committed
177
178
        for frame_idx, data in enumerate(dataset):

179
            frame = dataset_pb2.Frame()
Wenwei Zhang's avatar
Wenwei Zhang committed
180
181
            frame.ParseFromString(bytearray(data.numpy()))

182
183
184
185
186
            # Step 1. Extract camera images and lidar point clouds from waymo
            # raw data in '*.tfreord' and save as kitti format.
            if self.save_senor_data:
                self.save_image(frame, file_idx, frame_idx)
                self.save_lidar(frame, file_idx, frame_idx)
Wenwei Zhang's avatar
Wenwei Zhang committed
187

188
189
190
191
            # Step 2. Generate waymo train/val/test infos and save as pkl file.
            # TODO save the depth image for waymo challenge solution.
            self.create_waymo_info_file(frame, file_idx, frame_idx, file_infos)
        return file_infos
Wenwei Zhang's avatar
Wenwei Zhang committed
192
193
194
195
196
197

    def __len__(self):
        """Length of the filename list."""
        return len(self.tfrecord_pathnames)

    def save_image(self, frame, file_idx, frame_idx):
198
        """Parse and save the images in jpg format.
Wenwei Zhang's avatar
Wenwei Zhang committed
199
200
201
202
203
204
205
206
207

        Args:
            frame (:obj:`Frame`): Open dataset frame proto.
            file_idx (int): Current file index.
            frame_idx (int): Current frame index.
        """
        for img in frame.images:
            img_path = f'{self.image_save_dir}{str(img.name - 1)}/' + \
                f'{self.prefix}{str(file_idx).zfill(3)}' + \
208
                f'{str(frame_idx).zfill(3)}.jpg'
209
210
            with open(img_path, 'wb') as fp:
                fp.write(img.image)
Wenwei Zhang's avatar
Wenwei Zhang committed
211
212
213
214
215
216
217
218
219

    def save_lidar(self, frame, file_idx, frame_idx):
        """Parse and save the lidar data in psd format.

        Args:
            frame (:obj:`Frame`): Open dataset frame proto.
            file_idx (int): Current file index.
            frame_idx (int): Current frame index.
        """
220
        range_images, camera_projections, seg_labels, range_image_top_pose = \
Wenwei Zhang's avatar
Wenwei Zhang committed
221
222
            parse_range_image_and_camera_projection(frame)

223
224
225
        if range_image_top_pose is None:
            # the camera only split doesn't contain lidar points.
            return
Wenwei Zhang's avatar
Wenwei Zhang committed
226
        # First return
227
        points_0, cp_points_0, intensity_0, elongation_0, mask_indices_0 = \
Wenwei Zhang's avatar
Wenwei Zhang committed
228
229
230
231
232
233
234
235
236
237
            self.convert_range_image_to_point_cloud(
                frame,
                range_images,
                camera_projections,
                range_image_top_pose,
                ri_index=0
            )
        points_0 = np.concatenate(points_0, axis=0)
        intensity_0 = np.concatenate(intensity_0, axis=0)
        elongation_0 = np.concatenate(elongation_0, axis=0)
238
        mask_indices_0 = np.concatenate(mask_indices_0, axis=0)
Wenwei Zhang's avatar
Wenwei Zhang committed
239
240

        # Second return
241
        points_1, cp_points_1, intensity_1, elongation_1, mask_indices_1 = \
Wenwei Zhang's avatar
Wenwei Zhang committed
242
243
244
245
246
247
248
249
250
251
            self.convert_range_image_to_point_cloud(
                frame,
                range_images,
                camera_projections,
                range_image_top_pose,
                ri_index=1
            )
        points_1 = np.concatenate(points_1, axis=0)
        intensity_1 = np.concatenate(intensity_1, axis=0)
        elongation_1 = np.concatenate(elongation_1, axis=0)
252
        mask_indices_1 = np.concatenate(mask_indices_1, axis=0)
Wenwei Zhang's avatar
Wenwei Zhang committed
253
254
255
256

        points = np.concatenate([points_0, points_1], axis=0)
        intensity = np.concatenate([intensity_0, intensity_1], axis=0)
        elongation = np.concatenate([elongation_0, elongation_1], axis=0)
257
258
259
        mask_indices = np.concatenate([mask_indices_0, mask_indices_1], axis=0)

        # timestamp = frame.timestamp_micros * np.ones_like(intensity)
Wenwei Zhang's avatar
Wenwei Zhang committed
260
261
262

        # concatenate x,y,z, intensity, elongation, timestamp (6-dim)
        point_cloud = np.column_stack(
263
            (points, intensity, elongation, mask_indices))
Wenwei Zhang's avatar
Wenwei Zhang committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

        pc_path = f'{self.point_cloud_save_dir}/{self.prefix}' + \
            f'{str(file_idx).zfill(3)}{str(frame_idx).zfill(3)}.bin'
        point_cloud.astype(np.float32).tofile(pc_path)

    def convert_range_image_to_point_cloud(self,
                                           frame,
                                           range_images,
                                           camera_projections,
                                           range_image_top_pose,
                                           ri_index=0):
        """Convert range images to point cloud.

        Args:
            frame (:obj:`Frame`): Open dataset frame.
            range_images (dict): Mapping from laser_name to list of two
                range images corresponding with two returns.
            camera_projections (dict): Mapping from laser_name to list of two
                camera projections corresponding with two returns.
            range_image_top_pose (:obj:`Transform`): Range image pixel pose for
                top lidar.
285
286
            ri_index (int, optional): 0 for the first return,
                1 for the second return. Default: 0.
Wenwei Zhang's avatar
Wenwei Zhang committed
287
288
289
290

        Returns:
            tuple[list[np.ndarray]]: (List of points with shape [N, 3],
                camera projections of points with shape [N, 6], intensity
291
292
293
                with shape [N, 1], elongation with shape [N, 1], points'
                position in the depth map (element offset if points come from
                the main lidar otherwise -1) with shape[N, 1]). All the
Wenwei Zhang's avatar
Wenwei Zhang committed
294
295
296
297
298
299
300
301
                lists have the length of lidar numbers (5).
        """
        calibrations = sorted(
            frame.context.laser_calibrations, key=lambda c: c.name)
        points = []
        cp_points = []
        intensity = []
        elongation = []
302
        mask_indices = []
Wenwei Zhang's avatar
Wenwei Zhang committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

        frame_pose = tf.convert_to_tensor(
            value=np.reshape(np.array(frame.pose.transform), [4, 4]))
        # [H, W, 6]
        range_image_top_pose_tensor = tf.reshape(
            tf.convert_to_tensor(value=range_image_top_pose.data),
            range_image_top_pose.shape.dims)
        # [H, W, 3, 3]
        range_image_top_pose_tensor_rotation = \
            transform_utils.get_rotation_matrix(
                range_image_top_pose_tensor[..., 0],
                range_image_top_pose_tensor[..., 1],
                range_image_top_pose_tensor[..., 2])
        range_image_top_pose_tensor_translation = \
            range_image_top_pose_tensor[..., 3:]
        range_image_top_pose_tensor = transform_utils.get_transform(
            range_image_top_pose_tensor_rotation,
            range_image_top_pose_tensor_translation)
        for c in calibrations:
            range_image = range_images[c.name][ri_index]
            if len(c.beam_inclinations) == 0:
                beam_inclinations = range_image_utils.compute_inclination(
                    tf.constant(
                        [c.beam_inclination_min, c.beam_inclination_max]),
                    height=range_image.shape.dims[0])
            else:
                beam_inclinations = tf.constant(c.beam_inclinations)

            beam_inclinations = tf.reverse(beam_inclinations, axis=[-1])
            extrinsic = np.reshape(np.array(c.extrinsic.transform), [4, 4])

            range_image_tensor = tf.reshape(
                tf.convert_to_tensor(value=range_image.data),
                range_image.shape.dims)
            pixel_pose_local = None
            frame_pose_local = None
            if c.name == dataset_pb2.LaserName.TOP:
                pixel_pose_local = range_image_top_pose_tensor
                pixel_pose_local = tf.expand_dims(pixel_pose_local, axis=0)
                frame_pose_local = tf.expand_dims(frame_pose, axis=0)
            range_image_mask = range_image_tensor[..., 0] > 0

            if self.filter_no_label_zone_points:
                nlz_mask = range_image_tensor[..., 3] != 1.0  # 1.0: in NLZ
                range_image_mask = range_image_mask & nlz_mask

            range_image_cartesian = \
                range_image_utils.extract_point_cloud_from_range_image(
                    tf.expand_dims(range_image_tensor[..., 0], axis=0),
                    tf.expand_dims(extrinsic, axis=0),
                    tf.expand_dims(tf.convert_to_tensor(
                        value=beam_inclinations), axis=0),
                    pixel_pose=pixel_pose_local,
                    frame_pose=frame_pose_local)

358
359
            mask_index = tf.where(range_image_mask)

Wenwei Zhang's avatar
Wenwei Zhang committed
360
            range_image_cartesian = tf.squeeze(range_image_cartesian, axis=0)
361
            points_tensor = tf.gather_nd(range_image_cartesian, mask_index)
Wenwei Zhang's avatar
Wenwei Zhang committed
362
363
364
365

            cp = camera_projections[c.name][ri_index]
            cp_tensor = tf.reshape(
                tf.convert_to_tensor(value=cp.data), cp.shape.dims)
366
            cp_points_tensor = tf.gather_nd(cp_tensor, mask_index)
Wenwei Zhang's avatar
Wenwei Zhang committed
367
368
369
370
            points.append(points_tensor.numpy())
            cp_points.append(cp_points_tensor.numpy())

            intensity_tensor = tf.gather_nd(range_image_tensor[..., 1],
371
                                            mask_index)
Wenwei Zhang's avatar
Wenwei Zhang committed
372
373
374
            intensity.append(intensity_tensor.numpy())

            elongation_tensor = tf.gather_nd(range_image_tensor[..., 2],
375
                                             mask_index)
Wenwei Zhang's avatar
Wenwei Zhang committed
376
            elongation.append(elongation_tensor.numpy())
377
378
379
380
381
382
383
384
385
            if c.name == 1:
                mask_index = (ri_index * range_image_mask.shape[0] +
                              mask_index[:, 0]
                              ) * range_image_mask.shape[1] + mask_index[:, 1]
                mask_index = mask_index.numpy().astype(elongation[-1].dtype)
            else:
                mask_index = np.full_like(elongation[-1], -1)

            mask_indices.append(mask_index)
Wenwei Zhang's avatar
Wenwei Zhang committed
386

387
        return points, cp_points, intensity, elongation, mask_indices
Wenwei Zhang's avatar
Wenwei Zhang committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

    def cart_to_homo(self, mat):
        """Convert transformation matrix in Cartesian coordinates to
        homogeneous format.

        Args:
            mat (np.ndarray): Transformation matrix in Cartesian.
                The input matrix shape is 3x3 or 3x4.

        Returns:
            np.ndarray: Transformation matrix in homogeneous format.
                The matrix shape is 4x4.
        """
        ret = np.eye(4)
        if mat.shape == (3, 3):
            ret[:3, :3] = mat
        elif mat.shape == (3, 4):
            ret[:3, :] = mat
        else:
            raise ValueError(mat.shape)
        return ret
409

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
    def create_waymo_info_file(self, frame, file_idx, frame_idx, file_infos):
        r"""Generate waymo train/val/test infos.

        For more details about infos, please refer to:
        https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/waymo.html
        """  # noqa: E501
        frame_infos = dict()

        # Gather frame infos
        sample_idx = \
            f'{self.prefix}{str(file_idx).zfill(3)}{str(frame_idx).zfill(3)}'
        frame_infos['sample_idx'] = int(sample_idx)
        frame_infos['timestamp'] = frame.timestamp_micros
        frame_infos['ego2global'] = np.array(frame.pose.transform).reshape(
            4, 4).astype(np.float32).tolist()
        frame_infos['context_name'] = frame.context.name

        # Gather camera infos
        frame_infos['images'] = dict()
        # waymo front camera to kitti reference camera
        T_front_cam_to_ref = np.array([[0.0, -1.0, 0.0], [0.0, 0.0, -1.0],
                                       [1.0, 0.0, 0.0]])
        camera_calibs = []
        Tr_velo_to_cams = []
        for camera in frame.context.camera_calibrations:
            # extrinsic parameters
            T_cam_to_vehicle = np.array(camera.extrinsic.transform).reshape(
                4, 4)
            T_vehicle_to_cam = np.linalg.inv(T_cam_to_vehicle)
            Tr_velo_to_cam = \
                self.cart_to_homo(T_front_cam_to_ref) @ T_vehicle_to_cam
            Tr_velo_to_cams.append(Tr_velo_to_cam)

            # intrinsic parameters
            camera_calib = np.zeros((3, 4))
            camera_calib[0, 0] = camera.intrinsic[0]
            camera_calib[1, 1] = camera.intrinsic[1]
            camera_calib[0, 2] = camera.intrinsic[2]
            camera_calib[1, 2] = camera.intrinsic[3]
            camera_calib[2, 2] = 1
            camera_calibs.append(camera_calib)

        for i, (cam_key, camera_calib, Tr_velo_to_cam) in enumerate(
                zip(self.camera_types, camera_calibs, Tr_velo_to_cams)):
            cam_infos = dict()
            cam_infos['img_path'] = str(sample_idx) + '.jpg'
            # NOTE: frames.images order is different
            for img in frame.images:
                if img.name == i + 1:
                    width, height = Image.open(BytesIO(img.image)).size
            cam_infos['height'] = height
            cam_infos['width'] = width
            cam_infos['lidar2cam'] = Tr_velo_to_cam.astype(np.float32).tolist()
            cam_infos['cam2img'] = camera_calib.astype(np.float32).tolist()
            cam_infos['lidar2img'] = (camera_calib @ Tr_velo_to_cam).astype(
                np.float32).tolist()
            frame_infos['images'][cam_key] = cam_infos

        # Gather lidar infos
        lidar_infos = dict()
        lidar_infos['lidar_path'] = str(sample_idx) + '.bin'
        lidar_infos['num_pts_feats'] = 6
        frame_infos['lidar_points'] = lidar_infos

        # Gather lidar sweeps and camera sweeps infos
        # TODO: Add lidar2img in image sweeps infos when we need it.
        # TODO: Consider merging lidar sweeps infos and image sweeps infos.
        lidar_sweeps_infos, image_sweeps_infos = [], []
        for prev_offset in range(-1, -self.max_sweeps - 1, -1):
            prev_lidar_infos = dict()
            prev_image_infos = dict()
            if frame_idx + prev_offset >= 0:
                prev_frame_infos = file_infos[prev_offset]
                prev_lidar_infos['timestamp'] = prev_frame_infos['timestamp']
                prev_lidar_infos['ego2global'] = prev_frame_infos['ego2global']
                prev_lidar_infos['lidar_points'] = dict()
                lidar_path = prev_frame_infos['lidar_points']['lidar_path']
                prev_lidar_infos['lidar_points']['lidar_path'] = lidar_path
                lidar_sweeps_infos.append(prev_lidar_infos)

                prev_image_infos['timestamp'] = prev_frame_infos['timestamp']
                prev_image_infos['ego2global'] = prev_frame_infos['ego2global']
                prev_image_infos['images'] = dict()
                for cam_key in self.camera_types:
                    prev_image_infos['images'][cam_key] = dict()
                    img_path = prev_frame_infos['images'][cam_key]['img_path']
                    prev_image_infos['images'][cam_key]['img_path'] = img_path
                image_sweeps_infos.append(prev_image_infos)
        if lidar_sweeps_infos:
            frame_infos['lidar_sweeps'] = lidar_sweeps_infos
        if image_sweeps_infos:
            frame_infos['image_sweeps'] = image_sweeps_infos

        if not self.test_mode:
            # Gather instances infos which is used for lidar-based 3D detection
            frame_infos['instances'] = self.gather_instance_info(frame)
            # Gather cam_sync_instances infos which is used for image-based
            # (multi-view) 3D detection.
            if self.save_cam_sync_instances:
                frame_infos['cam_sync_instances'] = self.gather_instance_info(
                    frame, cam_sync=True)
            # Gather cam_instances infos which is used for image-based
            # (monocular) 3D detection (optional).
            # TODO: Should we use cam_sync_instances to generate cam_instances?
            if self.save_cam_instances:
                frame_infos['cam_instances'] = self.gather_cam_instance_info(
                    copy.deepcopy(frame_infos['instances']),
                    frame_infos['images'])
        file_infos.append(frame_infos)

    def gather_instance_info(self, frame, cam_sync=False):
        """Generate instances and cam_sync_instances infos.

        For more details about infos, please refer to:
        https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/waymo.html
        """  # noqa: E501
        id_to_bbox = dict()
        id_to_name = dict()
        for labels in frame.projected_lidar_labels:
            name = labels.name
            for label in labels.labels:
                # TODO: need a workaround as bbox may not belong to front cam
                bbox = [
                    label.box.center_x - label.box.length / 2,
                    label.box.center_y - label.box.width / 2,
                    label.box.center_x + label.box.length / 2,
                    label.box.center_y + label.box.width / 2
                ]
                id_to_bbox[label.id] = bbox
                id_to_name[label.id] = name - 1

        group_id = 0
        instance_infos = []
        for obj in frame.laser_labels:
            instance_info = dict()
            bounding_box = None
            name = None
            id = obj.id
            for proj_cam in self.cam_list:
                if id + proj_cam in id_to_bbox:
                    bounding_box = id_to_bbox.get(id + proj_cam)
                    name = id_to_name.get(id + proj_cam)
                    break

            # NOTE: the 2D labels do not have strict correspondence with
            # the projected 2D lidar labels
            # e.g.: the projected 2D labels can be in camera 2
            # while the most_visible_camera can have id 4
            if cam_sync:
                if obj.most_visible_camera_name:
                    name = self.cam_list.index(
                        f'_{obj.most_visible_camera_name}')
                    box3d = obj.camera_synced_box
                else:
                    continue
            else:
                box3d = obj.box

            if bounding_box is None or name is None:
                name = 0
                bounding_box = [0.0, 0.0, 0.0, 0.0]

            my_type = self.type_list[obj.type]

            if my_type not in self.selected_waymo_classes:
                continue
            else:
                label = self.selected_waymo_classes.index(my_type)

            if self.filter_empty_3dboxes and obj.num_lidar_points_in_box < 1:
                continue

            group_id += 1
            instance_info['group_id'] = group_id
            instance_info['camera_id'] = name
            instance_info['bbox'] = bounding_box
            instance_info['bbox_label'] = label

            height = box3d.height
            width = box3d.width
            length = box3d.length

            # NOTE: We save the bottom center of 3D bboxes.
            x = box3d.center_x
            y = box3d.center_y
            z = box3d.center_z - height / 2

            rotation_y = box3d.heading

            instance_info['bbox_3d'] = np.array(
                [x, y, z, length, width, height,
                 rotation_y]).astype(np.float32).tolist()
            instance_info['bbox_label_3d'] = label
            instance_info['num_lidar_pts'] = obj.num_lidar_points_in_box

            if self.save_track_id:
                instance_info['track_id'] = obj.id
            instance_infos.append(instance_info)
        return instance_infos

    def gather_cam_instance_info(self, instances: dict, images: dict):
        """Generate cam_instances infos.

        For more details about infos, please refer to:
        https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/waymo.html
        """  # noqa: E501
        cam_instances = dict()
        for cam_type in self.camera_types:
            lidar2cam = np.array(images[cam_type]['lidar2cam'])
            cam2img = np.array(images[cam_type]['cam2img'])
            cam_instances[cam_type] = []
            for instance in instances:
                cam_instance = dict()
                gt_bboxes_3d = np.array(instance['bbox_3d'])
                # Convert lidar coordinates to camera coordinates
                gt_bboxes_3d = LiDARInstance3DBoxes(
                    gt_bboxes_3d[None, :]).convert_to(
                        Box3DMode.CAM, lidar2cam, correct_yaw=True)
                corners_3d = gt_bboxes_3d.corners.numpy()
                corners_3d = corners_3d[0].T  # (1, 8, 3) -> (3, 8)
                in_camera = np.argwhere(corners_3d[2, :] > 0).flatten()
                corners_3d = corners_3d[:, in_camera]
                # Project 3d box to 2d.
                corner_coords = view_points(corners_3d, cam2img,
                                            True).T[:, :2].tolist()

                # Keep only corners that fall within the image.
                # TODO: imsize should be determined by the current image size
                # CAM_FRONT: (1920, 1280)
                # CAM_FRONT_LEFT: (1920, 1280)
                # CAM_SIDE_LEFT: (1920, 886)
                final_coords = post_process_coords(
                    corner_coords,
                    imsize=(images['CAM_FRONT']['width'],
                            images['CAM_FRONT']['height']))

                # Skip if the convex hull of the re-projected corners
                # does not intersect the image canvas.
                if final_coords is None:
                    continue
                else:
                    min_x, min_y, max_x, max_y = final_coords

                cam_instance['bbox'] = [min_x, min_y, max_x, max_y]
                cam_instance['bbox_label'] = instance['bbox_label']
                cam_instance['bbox_3d'] = gt_bboxes_3d.numpy().squeeze(
                ).astype(np.float32).tolist()
                cam_instance['bbox_label_3d'] = instance['bbox_label_3d']

                center_3d = gt_bboxes_3d.gravity_center.numpy()
                center_2d_with_depth = points_cam2img(
                    center_3d, cam2img, with_depth=True)
                center_2d_with_depth = center_2d_with_depth.squeeze().tolist()

                # normalized center2D + depth
                # if samples with depth < 0 will be removed
                if center_2d_with_depth[2] <= 0:
                    continue
                cam_instance['center_2d'] = center_2d_with_depth[:2]
                cam_instance['depth'] = center_2d_with_depth[2]

                # TODO: Discuss whether following info is necessary
                cam_instance['bbox_3d_isvalid'] = True
                cam_instance['velocity'] = -1
                cam_instances[cam_type].append(cam_instance)

        return cam_instances

    def merge_trainval_infos(self):
        """Merge training and validation infos into a single file."""
        train_infos_path = osp.join(
            osp.dirname(self.save_dir), f'{self.info_prefix}_infos_train.pkl')
        val_infos_path = osp.join(
            osp.dirname(self.save_dir), f'{self.info_prefix}_infos_val.pkl')
        train_infos = mmengine.load(train_infos_path)
        val_infos = mmengine.load(val_infos_path)
        trainval_infos = dict(
            metainfo=train_infos['metainfo'],
            data_list=train_infos['data_list'] + val_infos['data_list'])
        mmengine.dump(
            trainval_infos,
            osp.join(
                osp.dirname(self.save_dir),
                f'{self.info_prefix}_infos_trainval.pkl'))

695
696

def create_ImageSets_img_ids(root_dir, splits):
697
    """Create txt files indicating what to collect in each split."""
698
699
700
701
    save_dir = join(root_dir, 'ImageSets/')
    if not exists(save_dir):
        os.mkdir(save_dir)

702
    idx_all = [[] for _ in splits]
703
    for i, split in enumerate(splits):
704
        path = join(root_dir, split, 'image_0')
705
706
707
708
709
710
        if not exists(path):
            RawNames = []
        else:
            RawNames = os.listdir(path)

        for name in RawNames:
711
712
            if name.endswith('.jpg'):
                idx = name.replace('.jpg', '\n')
713
714
715
716
717
718
                idx_all[int(idx[0])].append(idx)
        idx_all[i].sort()

    open(save_dir + 'train.txt', 'w').writelines(idx_all[0])
    open(save_dir + 'val.txt', 'w').writelines(idx_all[1])
    open(save_dir + 'trainval.txt', 'w').writelines(idx_all[0] + idx_all[1])
719
720
721
722
    if len(idx_all) >= 3:
        open(save_dir + 'test.txt', 'w').writelines(idx_all[2])
    if len(idx_all) >= 4:
        open(save_dir + 'test_cam_only.txt', 'w').writelines(idx_all[3])
723
    print('created txt files indicating what to collect in ', splits)