dsvt_head.py 14.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
from typing import Dict, List, Tuple

import torch
from mmdet.models.utils import multi_apply
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet3d.models import CenterHead
from mmdet3d.models.layers import circle_nms, nms_bev
from mmdet3d.registry import MODELS
from mmdet3d.structures import Det3DDataSample, xywhr2xyxyr


@MODELS.register_module()
class DSVTCenterHead(CenterHead):
    """CenterHead for DSVT.

    This head adds IoU prediction branch based on the original CenterHead.
    """

    def __init__(self, *args, **kwargs):
        super(DSVTCenterHead, self).__init__(*args, **kwargs)

    def forward_single(self, x: Tensor) -> dict:
        """Forward function for CenterPoint.

        Args:
            x (torch.Tensor): Input feature map with the shape of
                [B, 512, 128, 128].

        Returns:
            list[dict]: Output results for tasks.
        """
        ret_dicts = []

        x = self.shared_conv(x)

        for task in self.task_heads:
            ret_dicts.append(task(x))

        return ret_dicts

    def forward(self, feats: List[Tensor]) -> Tuple[List[Tensor]]:
        """Forward pass.

        Args:
            feats (list[torch.Tensor]): Multi-level features, e.g.,
                features produced by FPN.

        Returns:
            tuple(list[dict]): Output results for tasks.
        """
        return multi_apply(self.forward_single, feats)

    def loss(self, pts_feats: List[Tensor],
             batch_data_samples: List[Det3DDataSample], *args,
             **kwargs) -> Dict[str, Tensor]:
        """Forward function of training.

        Args:
            pts_feats (list[torch.Tensor]): Features of point cloud branch
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance_3d`, .

        Returns:
            dict: Losses of each branch.
        """
        pass

    def loss_by_feat(self, preds_dicts: Tuple[List[dict]],
                     batch_gt_instances_3d: List[InstanceData], *args,
                     **kwargs):
        """Loss function for CenterHead.

        Args:
            preds_dicts (tuple[list[dict]]): Prediction results of
                multiple tasks. The outer tuple indicate  different
                tasks head, and the internal list indicate different
                FPN level.
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instances. It usually includes ``bboxes_3d`` and\
                ``labels_3d`` attributes.

        Returns:
            dict[str,torch.Tensor]: Loss of heatmap and bbox of each task.
        """
        pass

    def predict(self,
                pts_feats: Tuple[torch.Tensor],
                batch_data_samples: List[Det3DDataSample],
                rescale=True,
                **kwargs) -> List[InstanceData]:
        """
        Args:
            pts_feats (Tuple[torch.Tensor]): Point features..
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                Samples. It usually includes meta information of data.
            rescale (bool): Whether rescale the resutls to
                the original scale.

        Returns:
            list[:obj:`InstanceData`]: List of processed predictions. Each
            InstanceData contains 3d Bounding boxes and corresponding
            scores and labels.
        """
        preds_dict = self(pts_feats)
        batch_size = len(batch_data_samples)
        batch_input_metas = []
        for batch_index in range(batch_size):
            metainfo = batch_data_samples[batch_index].metainfo
            batch_input_metas.append(metainfo)

        results_list = self.predict_by_feat(
            preds_dict, batch_input_metas, rescale=rescale, **kwargs)
        return results_list

    def predict_by_feat(self, preds_dicts: Tuple[List[dict]],
                        batch_input_metas: List[dict], *args,
                        **kwargs) -> List[InstanceData]:
        """Generate bboxes from bbox head predictions.

        Args:
            preds_dicts (tuple[list[dict]]): Prediction results of
                multiple tasks. The outer tuple indicate  different
                tasks head, and the internal list indicate different
                FPN level.
            batch_input_metas (list[dict]): Meta info of multiple
                inputs.

        Returns:
            list[:obj:`InstanceData`]: Instance prediction
            results of each sample after the post process.
            Each item usually contains following keys.

                - scores_3d (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels_3d (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes_3d (:obj:`LiDARInstance3DBoxes`): Prediction
                  of bboxes, contains a tensor with shape
                  (num_instances, 7) or (num_instances, 9), and
                  the last 2 dimensions of 9 is
                  velocity.
        """
        rets = []
        for task_id, preds_dict in enumerate(preds_dicts):
            num_class_with_bg = self.num_classes[task_id]
            batch_size = preds_dict[0]['heatmap'].shape[0]
            batch_heatmap = preds_dict[0]['heatmap'].sigmoid()

            batch_reg = preds_dict[0]['reg']
            batch_hei = preds_dict[0]['height']

            if self.norm_bbox:
                batch_dim = torch.exp(preds_dict[0]['dim'])
            else:
                batch_dim = preds_dict[0]['dim']

            batch_rotc = preds_dict[0]['rot'][:, 0].unsqueeze(1)
            batch_rots = preds_dict[0]['rot'][:, 1].unsqueeze(1)
            batch_iou = (preds_dict[0]['iou'] +
                         1) * 0.5 if 'iou' in preds_dict[0] else None

            if 'vel' in preds_dict[0]:
                batch_vel = preds_dict[0]['vel']
            else:
                batch_vel = None
            temp = self.bbox_coder.decode(
                batch_heatmap,
                batch_rots,
                batch_rotc,
                batch_hei,
                batch_dim,
                batch_vel,
                reg=batch_reg,
                iou=batch_iou)
            assert self.test_cfg['nms_type'] in ['circle', 'rotate']
            batch_reg_preds, batch_cls_preds, batch_cls_labels, batch_iou_preds = [], [], [], []  # noqa: E501
            for box in temp:
                batch_reg_preds.append(box['bboxes'])
                batch_cls_preds.append(box['scores'])
                batch_cls_labels.append(box['labels'].long())
                batch_iou_preds.append(box['iou'])
            if self.test_cfg['nms_type'] == 'circle':
                ret_task = []
                for i in range(batch_size):
                    boxes3d = temp[i]['bboxes']
                    scores = temp[i]['scores']
                    labels = temp[i]['labels']
                    centers = boxes3d[:, [0, 1]]
                    boxes = torch.cat([centers, scores.view(-1, 1)], dim=1)
                    keep = torch.tensor(
                        circle_nms(
                            boxes.detach().cpu().numpy(),
                            self.test_cfg['min_radius'][task_id],
                            post_max_size=self.test_cfg['post_max_size']),
                        dtype=torch.long,
                        device=boxes.device)

                    boxes3d = boxes3d[keep]
                    scores = scores[keep]
                    labels = labels[keep]
                    ret = dict(bboxes=boxes3d, scores=scores, labels=labels)
                    ret_task.append(ret)
                rets.append(ret_task)
            else:
                rets.append(
                    self.get_task_detections(task_id, num_class_with_bg,
                                             batch_cls_preds, batch_reg_preds,
                                             batch_iou_preds, batch_cls_labels,
                                             batch_input_metas))

        # Merge branches results
        num_samples = len(rets[0])

        ret_list = []
        for i in range(num_samples):
            temp_instances = InstanceData()
            for k in rets[0][i].keys():
                if k == 'bboxes':
                    bboxes = torch.cat([ret[i][k] for ret in rets])
                    bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 5] * 0.5
                    bboxes = batch_input_metas[i]['box_type_3d'](
                        bboxes, self.bbox_coder.code_size)
                elif k == 'scores':
                    scores = torch.cat([ret[i][k] for ret in rets])
                elif k == 'labels':
                    flag = 0
                    for j, num_class in enumerate(self.num_classes):
                        rets[j][i][k] += flag
                        flag += num_class
                    labels = torch.cat([ret[i][k].int() for ret in rets])
            temp_instances.bboxes_3d = bboxes
            temp_instances.scores_3d = scores
            temp_instances.labels_3d = labels
            ret_list.append(temp_instances)
        return ret_list

    def get_task_detections(self, task_id, num_class_with_bg, batch_cls_preds,
                            batch_reg_preds, batch_iou_preds, batch_cls_labels,
                            img_metas):
        """Rotate nms for each task.

        Args:
            num_class_with_bg (int): Number of classes for the current task.
            batch_cls_preds (list[torch.Tensor]): Prediction score with the
                shape of [N].
            batch_reg_preds (list[torch.Tensor]): Prediction bbox with the
                shape of [N, 9].
            batch_iou_preds (list[torch.Tensor]): Prediction IoU with the
                shape of [N].
            batch_cls_labels (list[torch.Tensor]): Prediction label with the
                shape of [N].
            img_metas (list[dict]): Meta information of each sample.

        Returns:
            list[dict[str: torch.Tensor]]: contains the following keys:

                -bboxes (torch.Tensor): Prediction bboxes after nms with the
                    shape of [N, 9].
                -scores (torch.Tensor): Prediction scores after nms with the
                    shape of [N].
                -labels (torch.Tensor): Prediction labels after nms with the
                    shape of [N].
        """
        predictions_dicts = []
        for i, (box_preds, cls_preds, iou_preds, cls_labels) in enumerate(
                zip(batch_reg_preds, batch_cls_preds, batch_iou_preds,
                    batch_cls_labels)):
            pred_iou = torch.clamp(iou_preds, min=0, max=1.0)
            iou_rectifier = pred_iou.new_tensor(
                self.test_cfg['iou_rectifier'][task_id])
            cls_preds = torch.pow(cls_preds,
                                  1 - iou_rectifier[cls_labels]) * torch.pow(
                                      pred_iou, iou_rectifier[cls_labels])

            # Apply NMS in bird eye view
            # get the highest score per prediction, then apply nms
            # to remove overlapped box.
            if num_class_with_bg == 1:
                top_scores = cls_preds
                top_labels = torch.zeros(
                    cls_preds.shape[0],
                    device=cls_preds.device,
                    dtype=torch.long)

            else:
                top_labels = cls_labels.long()
                top_scores = cls_preds

            if top_scores.shape[0] != 0:
                boxes_for_nms = xywhr2xyxyr(img_metas[i]['box_type_3d'](
                    box_preds[:, :], self.bbox_coder.code_size).bev)

                pre_max_size = self.test_cfg['pre_max_size'][task_id]
                post_max_size = self.test_cfg['post_max_size'][task_id]
                # cls_label_per_task = self.cls_id_mapping_per_task[task_id]
                all_selected_mask = torch.zeros_like(top_labels, dtype=bool)
                all_indices = torch.arange(top_labels.size(0)).to(
                    top_labels.device)
                # Mind this when training on the new coordinate
                # Transform to old mmdet3d coordinate
                boxes_for_nms[:, 4] = (-boxes_for_nms[:, 4] + torch.pi / 2 * 1)
                boxes_for_nms[:, 4] = (boxes_for_nms[:, 4] +
                                       torch.pi) % (2 * torch.pi) - torch.pi

                for i, nms_thr in enumerate(self.test_cfg['nms_thr'][task_id]):
                    label_mask = top_labels == i
                    selected = nms_bev(
                        boxes_for_nms[label_mask],
                        top_scores[label_mask],
                        thresh=nms_thr,
                        pre_max_size=pre_max_size[i],
                        post_max_size=post_max_size[i])
                    indices = all_indices[label_mask][selected]
                    all_selected_mask.scatter_(0, indices, True)
            else:
                all_selected_mask = []

            # if selected is not None:
            selected_boxes = box_preds[all_selected_mask]
            selected_labels = top_labels[all_selected_mask]
            selected_scores = top_scores[all_selected_mask]

            # finally generate predictions.
            if selected_boxes.shape[0] != 0:
                box_preds = selected_boxes
                scores = selected_scores
                label_preds = selected_labels
                final_box_preds = box_preds
                final_scores = scores
                final_labels = label_preds
                predictions_dict = dict(
                    bboxes=final_box_preds,
                    scores=final_scores,
                    labels=final_labels)
            else:
                dtype = batch_reg_preds[0].dtype
                device = batch_reg_preds[0].device
                predictions_dict = dict(
                    bboxes=torch.zeros([0, self.bbox_coder.code_size],
                                       dtype=dtype,
                                       device=device),
                    scores=torch.zeros([0], dtype=dtype, device=device),
                    labels=torch.zeros([0],
                                       dtype=top_labels.dtype,
                                       device=device))

            predictions_dicts.append(predictions_dict)
        return predictions_dicts