custom_3d.py 10.4 KB
Newer Older
1
2
import mmcv
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
3
4
import tempfile
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
5
from torch.utils.data import Dataset
6
7

from mmdet.datasets import DATASETS
wuyuefeng's avatar
Demo  
wuyuefeng committed
8
from ..core.bbox import get_box_type
9
10
11
12
from .pipelines import Compose


@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
13
class Custom3DDataset(Dataset):
zhangwenwei's avatar
zhangwenwei committed
14
    """Customized 3D dataset.
15
16
17
18
19
20
21
22
23
24
25

    This is the base dataset of SUNRGB-D, ScanNet, nuScenes, and KITTI
    dataset.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
wangtai's avatar
wangtai committed
26
        modality (dict, optional): Modality to specify the sensor data used
27
28
29
30
31
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'LiDAR'. Available options includes
wangtai's avatar
wangtai committed
32

wangtai's avatar
wangtai committed
33
34
35
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
36
37
38
39
40
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
41
42

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
43
                 data_root,
44
45
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
46
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
47
                 modality=None,
48
                 box_type_3d='LiDAR',
wuyuefeng's avatar
Votenet  
wuyuefeng committed
49
                 filter_empty_gt=True,
zhangwenwei's avatar
zhangwenwei committed
50
                 test_mode=False):
51
        super().__init__()
zhangwenwei's avatar
zhangwenwei committed
52
53
        self.data_root = data_root
        self.ann_file = ann_file
54
        self.test_mode = test_mode
zhangwenwei's avatar
zhangwenwei committed
55
        self.modality = modality
wuyuefeng's avatar
Votenet  
wuyuefeng committed
56
        self.filter_empty_gt = filter_empty_gt
wuyuefeng's avatar
Demo  
wuyuefeng committed
57
        self.box_type_3d, self.box_mode_3d = get_box_type(box_type_3d)
zhangwenwei's avatar
zhangwenwei committed
58
59

        self.CLASSES = self.get_classes(classes)
60
        self.cat2id = {name: i for i, name in enumerate(self.CLASSES)}
zhangwenwei's avatar
zhangwenwei committed
61
        self.data_infos = self.load_annotations(self.ann_file)
62
63
64
65

        if pipeline is not None:
            self.pipeline = Compose(pipeline)

zhangwenwei's avatar
zhangwenwei committed
66
67
68
69
70
        # set group flag for the sampler
        if not self.test_mode:
            self._set_group_flag()

    def load_annotations(self, ann_file):
71
72
73
74
75
76
77
78
        """Load annotations from ann_file.

        Args:
            ann_file (str): Path of the annotation file.

        Returns:
            list[dict]: List of annotations.
        """
zhangwenwei's avatar
zhangwenwei committed
79
        return mmcv.load(ann_file)
80
81

    def get_data_info(self, index):
82
83
84
85
86
87
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
88
89
            dict: Data information that will be passed to the data \
                preprocessing pipelines. It includes the following keys:
90

wangtai's avatar
wangtai committed
91
92
93
94
                - sample_idx (str): Sample index.
                - pts_filename (str): Filename of point clouds.
                - file_name (str): Filename of point clouds.
                - ann_info (dict): Annotation info.
95
        """
96
97
        info = self.data_infos[index]
        sample_idx = info['point_cloud']['lidar_idx']
liyinhao's avatar
liyinhao committed
98
        pts_filename = osp.join(self.data_root, info['pts_path'])
99

liyinhao's avatar
liyinhao committed
100
101
102
103
        input_dict = dict(
            pts_filename=pts_filename,
            sample_idx=sample_idx,
            file_name=pts_filename)
104

zhangwenwei's avatar
zhangwenwei committed
105
        if not self.test_mode:
liyinhao's avatar
liyinhao committed
106
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
107
            input_dict['ann_info'] = annos
108
            if self.filter_empty_gt and ~(annos['gt_labels_3d'] != -1).any():
zhangwenwei's avatar
zhangwenwei committed
109
                return None
110
111
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
112
    def pre_pipeline(self, results):
113
114
115
        """Initialization before data preparation.

        Args:
116
            results (dict): Dict before data preprocessing.
117

wangtai's avatar
wangtai committed
118
119
120
121
122
123
124
125
126
                - img_fields (list): Image fields.
                - bbox3d_fields (list): 3D bounding boxes fields.
                - pts_mask_fields (list): Mask fields of points.
                - pts_seg_fields (list): Mask fields of point segments.
                - bbox_fields (list): Fields of bounding boxes.
                - mask_fields (list): Fields of masks.
                - seg_fields (list): Segment fields.
                - box_type_3d (str): 3D box type.
                - box_mode_3d (str): 3D box mode.
127
        """
zhangwenwei's avatar
zhangwenwei committed
128
        results['img_fields'] = []
zhangwenwei's avatar
zhangwenwei committed
129
130
131
        results['bbox3d_fields'] = []
        results['pts_mask_fields'] = []
        results['pts_seg_fields'] = []
zhangwenwei's avatar
zhangwenwei committed
132
133
134
        results['bbox_fields'] = []
        results['mask_fields'] = []
        results['seg_fields'] = []
135
136
        results['box_type_3d'] = self.box_type_3d
        results['box_mode_3d'] = self.box_mode_3d
137

liyinhao's avatar
liyinhao committed
138
    def prepare_train_data(self, index):
139
140
141
142
143
144
        """Training data preparation.

        Args:
            index (int): Index for accessing the target data.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
145
            dict: Training data dict of the corresponding index.
146
        """
liyinhao's avatar
liyinhao committed
147
        input_dict = self.get_data_info(index)
148
149
        if input_dict is None:
            return None
zhangwenwei's avatar
zhangwenwei committed
150
        self.pre_pipeline(input_dict)
151
        example = self.pipeline(input_dict)
152
153
154
        if self.filter_empty_gt and \
                (example is None or
                    ~(example['gt_labels_3d']._data != -1).any()):
155
156
157
            return None
        return example

158
    def prepare_test_data(self, index):
159
160
161
162
163
164
        """Prepare data for testing.

        Args:
            index (int): Index for accessing the target data.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
165
            dict: Testing data dict of the corresponding index.
166
        """
167
        input_dict = self.get_data_info(index)
zhangwenwei's avatar
zhangwenwei committed
168
        self.pre_pipeline(input_dict)
169
170
        example = self.pipeline(input_dict)
        return example
171

liyinhao's avatar
liyinhao committed
172
173
    @classmethod
    def get_classes(cls, classes=None):
174
175
        """Get class names of current dataset.

liyinhao's avatar
liyinhao committed
176
177
178
179
180
181
        Args:
            classes (Sequence[str] | str | None): If classes is None, use
                default CLASSES defined by builtin dataset. If classes is a
                string, take it as a file name. The file contains the name of
                classes where each line contains one class name. If classes is
                a tuple or list, override the CLASSES defined by the dataset.
zhangwenwei's avatar
zhangwenwei committed
182
183

        Return:
wangtai's avatar
wangtai committed
184
            list[str]: A list of class names.
liyinhao's avatar
liyinhao committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        """
        if classes is None:
            return cls.CLASSES

        if isinstance(classes, str):
            # take it as a file path
            class_names = mmcv.list_from_file(classes)
        elif isinstance(classes, (tuple, list)):
            class_names = classes
        else:
            raise ValueError(f'Unsupported type {type(classes)} of classes.')

        return class_names

liyinhao's avatar
liyinhao committed
199
200
201
202
    def format_results(self,
                       outputs,
                       pklfile_prefix=None,
                       submission_prefix=None):
203
204
205
206
207
208
209
210
211
        """Format the results to pkl file.

        Args:
            outputs (list[dict]): Testing results of the dataset.
            pklfile_prefix (str | None): The prefix of pkl files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
212
213
214
            tuple: (outputs, tmp_dir), outputs is the detection results, \
                tmp_dir is the temporal directory created for saving json \
                files when ``jsonfile_prefix`` is not specified.
215
        """
liyinhao's avatar
liyinhao committed
216
217
218
219
220
221
        if pklfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(tmp_dir.name, 'results')
            out = f'{pklfile_prefix}.pkl'
        mmcv.dump(outputs, out)
        return outputs, tmp_dir
222

liyinhao's avatar
liyinhao committed
223
224
225
226
227
228
229
    def evaluate(self,
                 results,
                 metric=None,
                 iou_thr=(0.25, 0.5),
                 logger=None,
                 show=False,
                 out_dir=None):
230
231
232
233
234
        """Evaluate.

        Evaluation in indoor protocol.

        Args:
liyinhao's avatar
liyinhao committed
235
            results (list[dict]): List of results.
wuyuefeng's avatar
wuyuefeng committed
236
237
            metric (str | list[str]): Metrics to be evaluated.
            iou_thr (list[float]): AP IoU thresholds.
liyinhao's avatar
liyinhao committed
238
239
240
241
            show (bool): Whether to visualize.
                Default: False.
            out_dir (str): Path to save the visualization results.
                Default: None.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
242

liyinhao's avatar
liyinhao committed
243
244
        Returns:
            dict: Evaluation results.
245
246
        """
        from mmdet3d.core.evaluation import indoor_eval
liyinhao's avatar
liyinhao committed
247
248
        assert isinstance(
            results, list), f'Expect results to be list, got {type(results)}.'
zhangwenwei's avatar
zhangwenwei committed
249
        assert len(results) > 0, 'Expect length of results > 0.'
wuyuefeng's avatar
Votenet  
wuyuefeng committed
250
        assert len(results) == len(self.data_infos)
liyinhao's avatar
liyinhao committed
251
252
253
        assert isinstance(
            results[0], dict
        ), f'Expect elements in results to be dict, got {type(results[0])}.'
254
        gt_annos = [info['annos'] for info in self.data_infos]
zhangwenwei's avatar
zhangwenwei committed
255
        label2cat = {i: cat_id for i, cat_id in enumerate(self.CLASSES)}
zhangwenwei's avatar
zhangwenwei committed
256
        ret_dict = indoor_eval(
wuyuefeng's avatar
wuyuefeng committed
257
258
259
260
261
262
263
            gt_annos,
            results,
            iou_thr,
            label2cat,
            logger=logger,
            box_type_3d=self.box_type_3d,
            box_mode_3d=self.box_mode_3d)
liyinhao's avatar
liyinhao committed
264
265
        if show:
            self.show(results, out_dir)
wuyuefeng's avatar
wuyuefeng committed
266

liyinhao's avatar
liyinhao committed
267
        return ret_dict
zhangwenwei's avatar
zhangwenwei committed
268
269

    def __len__(self):
270
271
272
273
274
        """Return the length of data infos.

        Returns:
            int: Length of data infos.
        """
zhangwenwei's avatar
zhangwenwei committed
275
276
277
        return len(self.data_infos)

    def _rand_another(self, idx):
278
279
280
281
282
        """Randomly get another item with the same flag.

        Returns:
            int: Another index of item with the same flag.
        """
zhangwenwei's avatar
zhangwenwei committed
283
284
285
286
        pool = np.where(self.flag == self.flag[idx])[0]
        return np.random.choice(pool)

    def __getitem__(self, idx):
287
288
289
290
291
        """Get item from infos according to the given index.

        Returns:
            dict: Data dictionary of the corresponding index.
        """
zhangwenwei's avatar
zhangwenwei committed
292
293
294
295
296
297
298
299
300
301
302
303
304
        if self.test_mode:
            return self.prepare_test_data(idx)
        while True:
            data = self.prepare_train_data(idx)
            if data is None:
                idx = self._rand_another(idx)
                continue
            return data

    def _set_group_flag(self):
        """Set flag according to image aspect ratio.

        Images with aspect ratio greater than 1 will be set as group 1,
305
306
        otherwise group 0. In 3D datasets, they are all the same, thus are all
        zeros.
zhangwenwei's avatar
zhangwenwei committed
307
308
        """
        self.flag = np.zeros(len(self), dtype=np.uint8)