test_box3d.py 27.5 KB
Newer Older
1
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
2
import pytest
3
4
import torch

zhangwenwei's avatar
zhangwenwei committed
5
6
from mmdet3d.core.bbox import (Box3DMode, CameraInstance3DBoxes,
                               LiDARInstance3DBoxes)
7
8
9


def test_lidar_boxes3d():
zhangwenwei's avatar
zhangwenwei committed
10
11
12
13
14
15
    # test empty initialization
    empty_boxes = []
    boxes = LiDARInstance3DBoxes(empty_boxes)
    assert boxes.tensor.shape[0] == 0
    assert boxes.tensor.shape[1] == 7

16
17
18
19
20
21
22
23
    # Test init with numpy array
    np_boxes = np.array(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62]],
        dtype=np.float32)
    boxes_1 = LiDARInstance3DBoxes(np_boxes)
    assert torch.allclose(boxes_1.tensor, torch.from_numpy(np_boxes))

zhangwenwei's avatar
zhangwenwei committed
24
25
26
27
28
29
    # test properties
    assert boxes_1.volume.size(0) == 2
    assert (boxes_1.center == boxes_1.bottom_center).all()
    assert repr(boxes) == (
        'LiDARInstance3DBoxes(\n    tensor([], size=(0, 7)))')

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[
            28.29669987, -0.5557558, -1.30332506, 1.47000003, 2.23000002,
            1.48000002, -1.57000005
        ],
         [
             26.66901946, 21.82302134, -1.73605708, 1.55999994, 3.48000002,
             1.39999998, -1.69000006
         ],
         [
             31.31977974, 8.16214412, -1.62177875, 1.74000001, 3.76999998,
             1.48000002, 2.78999996
         ]],
        dtype=torch.float32)
    boxes_2 = LiDARInstance3DBoxes(th_boxes)
    assert torch.allclose(boxes_2.tensor, th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
    expected_tensor = torch.tensor(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
         [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
         [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
         [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]])
    boxes = LiDARInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
61
62
63
64
    # concatenate empty list
    empty_boxes = LiDARInstance3DBoxes.cat([])
    assert empty_boxes.tensor.shape[0] == 0
    assert empty_boxes.tensor.shape[-1] == 7
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

    # test box flip
    expected_tensor = torch.tensor(
        [[1.7802081, -2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.6615927],
         [8.959413, -2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.5215927],
         [28.2967, 0.5557558, -1.303325, 1.47, 2.23, 1.48, 4.7115927],
         [26.66902, -21.82302, -1.736057, 1.56, 3.48, 1.4, 4.8315926],
         [31.31978, -8.162144, -1.6217787, 1.74, 3.77, 1.48, 0.35159278]])
    boxes.flip()
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box rotation
    expected_tensor = torch.tensor(
        [[1.0385344, -2.9020846, -1.7501148, 1.75, 3.39, 1.65, 1.9336663],
         [7.969653, -4.774011, -1.6357126, 1.54, 4.01, 1.57, 1.7936664],
         [27.405172, -7.0688415, -1.303325, 1.47, 2.23, 1.48, 4.9836664],
         [19.823532, -28.187025, -1.736057, 1.56, 3.48, 1.4, 5.1036663],
         [27.974297, -16.27845, -1.6217787, 1.74, 3.77, 1.48, 0.6236664]])
    boxes.rotate(0.27207362796436096)
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box scaling
    expected_tensor = torch.tensor([[
        1.0443488, -2.9183323, -1.7599131, 1.7597977, 3.4089797, 1.6592377,
        1.9336663
    ],
                                    [
                                        8.014273, -4.8007393, -1.6448704,
                                        1.5486219, 4.0324507, 1.57879,
                                        1.7936664
                                    ],
                                    [
                                        27.558605, -7.1084175, -1.310622,
                                        1.4782301, 2.242485, 1.488286,
                                        4.9836664
                                    ],
                                    [
                                        19.934517, -28.344835, -1.7457767,
                                        1.5687338, 3.4994833, 1.4078381,
                                        5.1036663
                                    ],
                                    [
                                        28.130915, -16.369587, -1.6308585,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    boxes.scale(1.00559866335275)
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box translation
    expected_tensor = torch.tensor([[
        1.1281544, -3.0507944, -1.9169292, 1.7597977, 3.4089797, 1.6592377,
        1.9336663
    ],
                                    [
                                        8.098079, -4.9332013, -1.8018866,
                                        1.5486219, 4.0324507, 1.57879,
                                        1.7936664
                                    ],
                                    [
                                        27.64241, -7.2408795, -1.4676381,
                                        1.4782301, 2.242485, 1.488286,
                                        4.9836664
                                    ],
                                    [
                                        20.018322, -28.477297, -1.9027928,
                                        1.5687338, 3.4994833, 1.4078381,
                                        5.1036663
                                    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    boxes.translate([0.0838056, -0.13246193, -0.15701613])
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test bbox in_range_bev
    expected_tensor = torch.tensor([1, 1, 1, 1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

zhangwenwei's avatar
zhangwenwei committed
149
150
151
152
153
    # test bbox in_range
    expected_tensor = torch.tensor([1, 1, 0, 0, 0], dtype=torch.bool)
    mask = boxes.in_range_3d([0, -20, -2, 22, 2, 5])
    assert (mask == expected_tensor).all()

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    # test bbox indexing
    index_boxes = boxes[2:5]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
        4.9836664
    ],
                                    [
                                        20.018322, -28.477297, -1.9027928,
                                        1.5687338, 3.4994833, 1.4078381,
                                        5.1036663
                                    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    assert len(index_boxes) == 3
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    index_boxes = boxes[2]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
        4.9836664
    ]])
    assert len(index_boxes) == 1
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    index_boxes = boxes[[2, 4]]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
        4.9836664
    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    assert len(index_boxes) == 2
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    # test iteration
    for i, box in enumerate(index_boxes):
        torch.allclose(box, expected_tensor[i])
zhangwenwei's avatar
zhangwenwei committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

    # test properties
    assert torch.allclose(boxes.bottom_center, boxes.tensor[:, :3])
    expected_tensor = (
        boxes.tensor[:, :3] - boxes.tensor[:, 3:6] *
        (torch.tensor([0.5, 0.5, 0]) - torch.tensor([0.5, 0.5, 0.5])))
    assert torch.allclose(boxes.gravity_center, expected_tensor)

    boxes.limit_yaw()
    assert (boxes.tensor[:, 6] <= np.pi / 2).all()
    assert (boxes.tensor[:, 6] >= -np.pi / 2).all()

    Box3DMode.convert(boxes, Box3DMode.LIDAR, Box3DMode.LIDAR)
    expected_tesor = boxes.tensor.clone()
    assert torch.allclose(expected_tesor, boxes.tensor)

    boxes.flip()
    boxes.flip()
    boxes.limit_yaw()
    assert torch.allclose(expected_tesor, boxes.tensor)

    # test nearest_bev
    expected_tensor = torch.tensor([[-0.5763, -3.9307, 2.8326, -2.1709],
                                    [6.0819, -5.7075, 10.1143, -4.1589],
                                    [26.5212, -7.9800, 28.7637, -6.5018],
                                    [18.2686, -29.2617, 21.7681, -27.6929],
                                    [27.3398, -18.3976, 29.0896, -14.6065]])
    # the pytorch print loses some precision
    assert torch.allclose(
        boxes.nearset_bev, expected_tensor, rtol=1e-4, atol=1e-7)

    # obtained by the print of the original implementation
    expected_tensor = torch.tensor([[[2.4093e+00, -4.4784e+00, -1.9169e+00],
                                     [2.4093e+00, -4.4784e+00, -2.5769e-01],
                                     [-7.7767e-01, -3.2684e+00, -2.5769e-01],
                                     [-7.7767e-01, -3.2684e+00, -1.9169e+00],
                                     [3.0340e+00, -2.8332e+00, -1.9169e+00],
                                     [3.0340e+00, -2.8332e+00, -2.5769e-01],
                                     [-1.5301e-01, -1.6232e+00, -2.5769e-01],
                                     [-1.5301e-01, -1.6232e+00, -1.9169e+00]],
                                    [[9.8933e+00, -6.1340e+00, -1.8019e+00],
                                     [9.8933e+00, -6.1340e+00, -2.2310e-01],
                                     [5.9606e+00, -5.2427e+00, -2.2310e-01],
                                     [5.9606e+00, -5.2427e+00, -1.8019e+00],
                                     [1.0236e+01, -4.6237e+00, -1.8019e+00],
                                     [1.0236e+01, -4.6237e+00, -2.2310e-01],
                                     [6.3029e+00, -3.7324e+00, -2.2310e-01],
                                     [6.3029e+00, -3.7324e+00, -1.8019e+00]],
                                    [[2.8525e+01, -8.2534e+00, -1.4676e+00],
                                     [2.8525e+01, -8.2534e+00, 2.0648e-02],
                                     [2.6364e+01, -7.6525e+00, 2.0648e-02],
                                     [2.6364e+01, -7.6525e+00, -1.4676e+00],
                                     [2.8921e+01, -6.8292e+00, -1.4676e+00],
                                     [2.8921e+01, -6.8292e+00, 2.0648e-02],
                                     [2.6760e+01, -6.2283e+00, 2.0648e-02],
                                     [2.6760e+01, -6.2283e+00, -1.4676e+00]],
                                    [[2.1337e+01, -2.9870e+01, -1.9028e+00],
                                     [2.1337e+01, -2.9870e+01, -4.9495e-01],
                                     [1.8102e+01, -2.8535e+01, -4.9495e-01],
                                     [1.8102e+01, -2.8535e+01, -1.9028e+00],
                                     [2.1935e+01, -2.8420e+01, -1.9028e+00],
                                     [2.1935e+01, -2.8420e+01, -4.9495e-01],
                                     [1.8700e+01, -2.7085e+01, -4.9495e-01],
                                     [1.8700e+01, -2.7085e+01, -1.9028e+00]],
                                    [[2.6398e+01, -1.7530e+01, -1.7879e+00],
                                     [2.6398e+01, -1.7530e+01, -2.9959e-01],
                                     [2.8612e+01, -1.4452e+01, -2.9959e-01],
                                     [2.8612e+01, -1.4452e+01, -1.7879e+00],
                                     [2.7818e+01, -1.8552e+01, -1.7879e+00],
                                     [2.7818e+01, -1.8552e+01, -2.9959e-01],
                                     [3.0032e+01, -1.5474e+01, -2.9959e-01],
                                     [3.0032e+01, -1.5474e+01, -1.7879e+00]]])
    # the pytorch print loses some precision
    assert torch.allclose(boxes.corners, expected_tensor, rtol=1e-4, atol=1e-7)
zhangwenwei's avatar
zhangwenwei committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310


def test_boxes_conversion():
    """Test the conversion of boxes between different modes.

    ComandLine:
        xdoctest tests/test_box3d.py::test_boxes_conversion zero
    """
    lidar_boxes = LiDARInstance3DBoxes(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
         [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
         [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
         [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]])
    cam_box_tensor = Box3DMode.convert(lidar_boxes.tensor, Box3DMode.LIDAR,
                                       Box3DMode.CAM)
    lidar_box_tensor = Box3DMode.convert(cam_box_tensor, Box3DMode.CAM,
                                         Box3DMode.LIDAR)
    expected_tensor = torch.tensor(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
         [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
         [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
         [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]])

    assert torch.allclose(expected_tensor, lidar_box_tensor)
    assert torch.allclose(lidar_boxes.tensor, lidar_box_tensor)

    depth_box_tensor = Box3DMode.convert(cam_box_tensor, Box3DMode.CAM,
                                         Box3DMode.DEPTH)
    depth_to_cam_box_tensor = Box3DMode.convert(depth_box_tensor,
                                                Box3DMode.DEPTH, Box3DMode.CAM)
    assert torch.allclose(cam_box_tensor, depth_to_cam_box_tensor)

    # test error raise with not supported conversion
    with pytest.raises(NotImplementedError):
        Box3DMode.convert(lidar_box_tensor, Box3DMode.LIDAR, Box3DMode.DEPTH)
    with pytest.raises(NotImplementedError):
        Box3DMode.convert(depth_box_tensor, Box3DMode.DEPTH, Box3DMode.LIDAR)

zhangwenwei's avatar
zhangwenwei committed
311
312
313
314
315
    # test similar mode conversion
    same_results = Box3DMode.convert(depth_box_tensor, Box3DMode.DEPTH,
                                     Box3DMode.DEPTH)
    assert (same_results == depth_box_tensor).all()

zhangwenwei's avatar
zhangwenwei committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    # test conversion with a given rt_mat
    camera_boxes = CameraInstance3DBoxes(
        [[0.06, 1.77, 21.4, 3.2, 1.61, 1.66, -1.54],
         [6.59, 1.53, 6.76, 12.78, 3.66, 2.28, 1.55],
         [6.71, 1.59, 22.18, 14.73, 3.64, 2.32, 1.59],
         [7.11, 1.58, 34.54, 10.04, 3.61, 2.32, 1.61],
         [7.78, 1.65, 45.95, 12.83, 3.63, 2.34, 1.64]])

    rect = torch.tensor(
        [[0.9999239, 0.00983776, -0.00744505, 0.],
         [-0.0098698, 0.9999421, -0.00427846, 0.],
         [0.00740253, 0.00435161, 0.9999631, 0.], [0., 0., 0., 1.]],
        dtype=torch.float32)

    Trv2c = torch.tensor(
        [[7.533745e-03, -9.999714e-01, -6.166020e-04, -4.069766e-03],
         [1.480249e-02, 7.280733e-04, -9.998902e-01, -7.631618e-02],
         [9.998621e-01, 7.523790e-03, 1.480755e-02, -2.717806e-01],
         [0.000000e+00, 0.000000e+00, 0.000000e+00, 1.000000e+00]],
        dtype=torch.float32)

    expected_tensor = torch.tensor(
        [[
            2.16902434e+01, -4.06038554e-02, -1.61906639e+00, 1.65999997e+00,
            3.20000005e+00, 1.61000001e+00, -1.53999996e+00
        ],
         [
             7.05006905e+00, -6.57459601e+00, -1.60107949e+00, 2.27999997e+00,
             1.27799997e+01, 3.66000009e+00, 1.54999995e+00
         ],
         [
             2.24698818e+01, -6.69203759e+00, -1.50118145e+00, 2.31999993e+00,
             1.47299995e+01, 3.64000010e+00, 1.59000003e+00
         ],
         [
             3.48291965e+01, -7.09058388e+00, -1.36622983e+00, 2.31999993e+00,
             1.00400000e+01, 3.60999990e+00, 1.61000001e+00
         ],
         [
             4.62394617e+01, -7.75838800e+00, -1.32405020e+00, 2.33999991e+00,
             1.28299999e+01, 3.63000011e+00, 1.63999999e+00
         ]],
        dtype=torch.float32)

    rt_mat = rect @ Trv2c
zhangwenwei's avatar
zhangwenwei committed
361
362
    # test coversion with Box type
    cam_to_lidar_box = Box3DMode.convert(camera_boxes, Box3DMode.CAM,
zhangwenwei's avatar
zhangwenwei committed
363
                                         Box3DMode.LIDAR, rt_mat.inverse())
zhangwenwei's avatar
zhangwenwei committed
364
    assert torch.allclose(cam_to_lidar_box.tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
365

zhangwenwei's avatar
zhangwenwei committed
366
367
368
    lidar_to_cam_box = Box3DMode.convert(cam_to_lidar_box.tensor,
                                         Box3DMode.LIDAR, Box3DMode.CAM,
                                         rt_mat)
zhangwenwei's avatar
zhangwenwei committed
369
    assert torch.allclose(lidar_to_cam_box, camera_boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

    # test numpy convert
    cam_to_lidar_box = Box3DMode.convert(camera_boxes.tensor.numpy(),
                                         Box3DMode.CAM, Box3DMode.LIDAR,
                                         rt_mat.inverse().numpy())
    assert np.allclose(cam_to_lidar_box, expected_tensor.numpy())

    # test list convert
    cam_to_lidar_box = Box3DMode.convert(
        camera_boxes.tensor[0].numpy().tolist(), Box3DMode.CAM,
        Box3DMode.LIDAR,
        rt_mat.inverse().numpy())
    assert np.allclose(np.array(cam_to_lidar_box), expected_tensor[0].numpy())


def test_camera_boxes3d():
    # Test init with numpy array
    np_boxes = np.array(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62]],
        dtype=np.float32)

    boxes_1 = Box3DMode.convert(
        LiDARInstance3DBoxes(np_boxes), Box3DMode.LIDAR, Box3DMode.CAM)
    assert isinstance(boxes_1, CameraInstance3DBoxes)

    cam_np_boxes = Box3DMode.convert(np_boxes, Box3DMode.LIDAR, Box3DMode.CAM)
    assert torch.allclose(boxes_1.tensor,
                          boxes_1.tensor.new_tensor(cam_np_boxes))

    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[
            28.29669987, -0.5557558, -1.30332506, 1.47000003, 2.23000002,
            1.48000002, -1.57000005
        ],
         [
             26.66901946, 21.82302134, -1.73605708, 1.55999994, 3.48000002,
             1.39999998, -1.69000006
         ],
         [
             31.31977974, 8.16214412, -1.62177875, 1.74000001, 3.76999998,
             1.48000002, 2.78999996
         ]],
        dtype=torch.float32)
    cam_th_boxes = Box3DMode.convert(th_boxes, Box3DMode.LIDAR, Box3DMode.CAM)
    boxes_2 = CameraInstance3DBoxes(cam_th_boxes)
    assert torch.allclose(boxes_2.tensor, cam_th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
    expected_tensor = Box3DMode.convert(
        torch.tensor(
            [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
             [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
             [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
             [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
             [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]]),
        Box3DMode.LIDAR, Box3DMode.CAM)
    boxes = CameraInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box flip
    expected_tensor = Box3DMode.convert(
        torch.tensor(
            [[1.7802081, -2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.6615927],
             [8.959413, -2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.5215927],
             [28.2967, 0.5557558, -1.303325, 1.47, 2.23, 1.48, 4.7115927],
             [26.66902, -21.82302, -1.736057, 1.56, 3.48, 1.4, 4.8315926],
             [31.31978, -8.162144, -1.6217787, 1.74, 3.77, 1.48, 0.35159278]]),
        Box3DMode.LIDAR, Box3DMode.CAM)
    boxes.flip()
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box rotation
    expected_tensor = Box3DMode.convert(
        torch.tensor(
            [[1.0385344, -2.9020846, -1.7501148, 1.75, 3.39, 1.65, 1.9336663],
             [7.969653, -4.774011, -1.6357126, 1.54, 4.01, 1.57, 1.7936664],
             [27.405172, -7.0688415, -1.303325, 1.47, 2.23, 1.48, 4.9836664],
             [19.823532, -28.187025, -1.736057, 1.56, 3.48, 1.4, 5.1036663],
             [27.974297, -16.27845, -1.6217787, 1.74, 3.77, 1.48, 0.6236664]]),
        Box3DMode.LIDAR, Box3DMode.CAM)
zhangwenwei's avatar
zhangwenwei committed
456
    boxes.rotate(torch.tensor(0.27207362796436096))
zhangwenwei's avatar
zhangwenwei committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box scaling
    expected_tensor = Box3DMode.convert(
        torch.tensor([[
            1.0443488, -2.9183323, -1.7599131, 1.7597977, 3.4089797, 1.6592377,
            1.9336663
        ],
                      [
                          8.014273, -4.8007393, -1.6448704, 1.5486219,
                          4.0324507, 1.57879, 1.7936664
                      ],
                      [
                          27.558605, -7.1084175, -1.310622, 1.4782301,
                          2.242485, 1.488286, 4.9836664
                      ],
                      [
                          19.934517, -28.344835, -1.7457767, 1.5687338,
                          3.4994833, 1.4078381, 5.1036663
                      ],
                      [
                          28.130915, -16.369587, -1.6308585, 1.7497417,
                          3.791107, 1.488286, 0.6236664
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
    boxes.scale(1.00559866335275)
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box translation
    expected_tensor = Box3DMode.convert(
        torch.tensor([[
            1.1281544, -3.0507944, -1.9169292, 1.7597977, 3.4089797, 1.6592377,
            1.9336663
        ],
                      [
                          8.098079, -4.9332013, -1.8018866, 1.5486219,
                          4.0324507, 1.57879, 1.7936664
                      ],
                      [
                          27.64241, -7.2408795, -1.4676381, 1.4782301,
                          2.242485, 1.488286, 4.9836664
                      ],
                      [
                          20.018322, -28.477297, -1.9027928, 1.5687338,
                          3.4994833, 1.4078381, 5.1036663
                      ],
                      [
                          28.21472, -16.502048, -1.7878747, 1.7497417,
                          3.791107, 1.488286, 0.6236664
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
zhangwenwei's avatar
zhangwenwei committed
506
    boxes.translate(torch.tensor([0.13246193, 0.15701613, 0.0838056]))
zhangwenwei's avatar
zhangwenwei committed
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test bbox in_range_bev
    expected_tensor = torch.tensor([1, 1, 1, 1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

    # test bbox in_range
    expected_tensor = torch.tensor([1, 1, 0, 0, 0], dtype=torch.bool)
    mask = boxes.in_range_3d([-2, -5, 0, 20, 2, 22])
    assert (mask == expected_tensor).all()

    # test properties
    assert torch.allclose(boxes.bottom_center, boxes.tensor[:, :3])
    expected_tensor = (
        boxes.tensor[:, :3] - boxes.tensor[:, 3:6] *
        (torch.tensor([0.5, 1.0, 0.5]) - torch.tensor([0.5, 0.5, 0.5])))
    assert torch.allclose(boxes.gravity_center, expected_tensor)

    boxes.limit_yaw()
    assert (boxes.tensor[:, 6] <= np.pi / 2).all()
    assert (boxes.tensor[:, 6] >= -np.pi / 2).all()

    Box3DMode.convert(boxes, Box3DMode.LIDAR, Box3DMode.LIDAR)
    expected_tesor = boxes.tensor.clone()
    assert torch.allclose(expected_tesor, boxes.tensor)

    boxes.flip()
    boxes.flip()
    boxes.limit_yaw()
    assert torch.allclose(expected_tesor, boxes.tensor)

    # test nearest_bev
    # BEV box in lidar coordinates (x, y)
    lidar_expected_tensor = torch.tensor(
        [[-0.5763, -3.9307, 2.8326, -2.1709],
         [6.0819, -5.7075, 10.1143, -4.1589],
         [26.5212, -7.9800, 28.7637, -6.5018],
         [18.2686, -29.2617, 21.7681, -27.6929],
         [27.3398, -18.3976, 29.0896, -14.6065]])
    # BEV box in camera coordinate (-y, x)
    expected_tensor = lidar_expected_tensor.clone()
    expected_tensor[:, 0::2] = -lidar_expected_tensor[:, [3, 1]]
    expected_tensor[:, 1::2] = lidar_expected_tensor[:, 0::2]
    # the pytorch print loses some precision
    assert torch.allclose(
        boxes.nearset_bev, expected_tensor, rtol=1e-4, atol=1e-7)

    # obtained by the print of the original implementation
    expected_tensor = torch.tensor([[[3.2684e+00, 2.5769e-01, -7.7767e-01],
                                     [1.6232e+00, 2.5769e-01, -1.5301e-01],
                                     [1.6232e+00, 1.9169e+00, -1.5301e-01],
                                     [3.2684e+00, 1.9169e+00, -7.7767e-01],
                                     [4.4784e+00, 2.5769e-01, 2.4093e+00],
                                     [2.8332e+00, 2.5769e-01, 3.0340e+00],
                                     [2.8332e+00, 1.9169e+00, 3.0340e+00],
                                     [4.4784e+00, 1.9169e+00, 2.4093e+00]],
                                    [[5.2427e+00, 2.2310e-01, 5.9606e+00],
                                     [3.7324e+00, 2.2310e-01, 6.3029e+00],
                                     [3.7324e+00, 1.8019e+00, 6.3029e+00],
                                     [5.2427e+00, 1.8019e+00, 5.9606e+00],
                                     [6.1340e+00, 2.2310e-01, 9.8933e+00],
                                     [4.6237e+00, 2.2310e-01, 1.0236e+01],
                                     [4.6237e+00, 1.8019e+00, 1.0236e+01],
                                     [6.1340e+00, 1.8019e+00, 9.8933e+00]],
                                    [[7.6525e+00, -2.0648e-02, 2.6364e+01],
                                     [6.2283e+00, -2.0648e-02, 2.6760e+01],
                                     [6.2283e+00, 1.4676e+00, 2.6760e+01],
                                     [7.6525e+00, 1.4676e+00, 2.6364e+01],
                                     [8.2534e+00, -2.0648e-02, 2.8525e+01],
                                     [6.8292e+00, -2.0648e-02, 2.8921e+01],
                                     [6.8292e+00, 1.4676e+00, 2.8921e+01],
                                     [8.2534e+00, 1.4676e+00, 2.8525e+01]],
                                    [[2.8535e+01, 4.9495e-01, 1.8102e+01],
                                     [2.7085e+01, 4.9495e-01, 1.8700e+01],
                                     [2.7085e+01, 1.9028e+00, 1.8700e+01],
                                     [2.8535e+01, 1.9028e+00, 1.8102e+01],
                                     [2.9870e+01, 4.9495e-01, 2.1337e+01],
                                     [2.8420e+01, 4.9495e-01, 2.1935e+01],
                                     [2.8420e+01, 1.9028e+00, 2.1935e+01],
                                     [2.9870e+01, 1.9028e+00, 2.1337e+01]],
                                    [[1.4452e+01, 2.9959e-01, 2.8612e+01],
                                     [1.5474e+01, 2.9959e-01, 3.0032e+01],
                                     [1.5474e+01, 1.7879e+00, 3.0032e+01],
                                     [1.4452e+01, 1.7879e+00, 2.8612e+01],
                                     [1.7530e+01, 2.9959e-01, 2.6398e+01],
                                     [1.8552e+01, 2.9959e-01, 2.7818e+01],
                                     [1.8552e+01, 1.7879e+00, 2.7818e+01],
                                     [1.7530e+01, 1.7879e+00, 2.6398e+01]]])

    # the pytorch print loses some precision
    assert torch.allclose(boxes.corners, expected_tensor, rtol=1e-4, atol=1e-7)