"tests/models/resnet/test_modeling_flax_resnet.py" did not exist on "871c31a6f120330677911224584f80c554958ae4"
part_aggregation_roi_head.py 9.86 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import torch.nn.functional as F

from mmdet3d.core import AssignResult
from mmdet3d.core.bbox import bbox3d2roi
from mmdet.core import build_assigner, build_sampler
from mmdet.models import HEADS
from ..builder import build_head, build_roi_extractor
from .base_3droi_head import Base3DRoIHead


@HEADS.register_module
class PartAggregationROIHead(Base3DRoIHead):
    """Part aggregation roi head for PartA2"""

    def __init__(self,
                 semantic_head,
                 num_classes=3,
                 seg_roi_extractor=None,
                 part_roi_extractor=None,
                 bbox_head=None,
                 train_cfg=None,
                 test_cfg=None):
        super(PartAggregationROIHead, self).__init__(
            bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg)
        self.num_classes = num_classes
        assert semantic_head is not None
        self.semantic_head = build_head(semantic_head)

        if seg_roi_extractor is not None:
            self.seg_roi_extractor = build_roi_extractor(seg_roi_extractor)
        if part_roi_extractor is not None:
            self.part_roi_extractor = build_roi_extractor(part_roi_extractor)

        self.init_assigner_sampler()

    def init_weights(self, pretrained):
        pass

    def init_mask_head(self):
        pass

    def init_bbox_head(self, bbox_head):
        self.bbox_head = build_head(bbox_head)

    def init_assigner_sampler(self):
        self.bbox_assigner = None
        self.bbox_sampler = None
        if self.train_cfg:
            if isinstance(self.train_cfg.assigner, dict):
                self.bbox_assigner = build_assigner(self.train_cfg.assigner)
            elif isinstance(self.train_cfg.assigner, list):
                self.bbox_assigner = [
                    build_assigner(res) for res in self.train_cfg.assigner
                ]
            self.bbox_sampler = build_sampler(self.train_cfg.sampler)

    @property
    def with_semantic(self):
        return hasattr(self,
                       'semantic_head') and self.semantic_head is not None

    def forward_train(self, feats_dict, voxels_dict, img_meta, proposal_list,
                      gt_bboxes_3d, gt_labels_3d):
        """Training forward function of PartAggregationROIHead

        Args:
            feats_dict (dict): Contains features from the first stage.
            voxels_dict (dict): Contains information of voxels.
            img_metas (list[dict]): Meta info of each image.
            proposal_list (list[dict]): Proposal information from rpn.
            gt_bboxes_3d (list[FloatTensor]): GT bboxes of each batch.
            gt_labels_3d (list[LongTensor]): GT labels of each batch.

        Returns:
            dict: losses from each head.
        """
        losses = dict()
        if self.with_semantic:
            semantic_results = self._semantic_forward_train(
                feats_dict['seg_features'], voxels_dict, gt_bboxes_3d,
                gt_labels_3d)
            losses.update(semantic_results['loss_semantic'])

        sample_results = self._assign_and_sample(proposal_list, gt_bboxes_3d,
                                                 gt_labels_3d)
        if self.with_bbox:
            bbox_results = self._bbox_forward_train(
                feats_dict['seg_features'], semantic_results['part_feats'],
                voxels_dict, sample_results)
            losses.update(bbox_results['loss_bbox'])

        return losses

    def simple_test(self, feats_dict, voxels_dict, img_meta, proposal_list,
                    **kwargs):
        """Simple testing forward function of PartAggregationROIHead

        Args:
            feats_dict (dict): Contains features from the first stage.
            voxels_dict (dict): Contains information of voxels.
            img_metas (list[dict]): Meta info of each image.
            proposal_list (list[dict]): Proposal information from rpn.

        Returns:
            list[dict]: Bbox results of each batch.
        """
        assert self.with_bbox, 'Bbox head must be implemented.'
        assert self.with_semantic

        semantic_results = self.semantic_head(feats_dict['seg_features'])

        rois = bbox3d2roi([res['box3d_lidar'] for res in proposal_list])
        label_preds = [res['label_preds'] for res in proposal_list]
        cls_preds = [res['cls_preds'] for res in proposal_list]
        bbox_results = self._bbox_forward(feats_dict['seg_features'],
                                          semantic_results['part_feats'],
                                          voxels_dict, rois)

        bbox_list = self.bbox_head.get_bboxes(
            rois,
            bbox_results['cls_score'],
            bbox_results['bbox_pred'],
            label_preds,
            cls_preds,
            img_meta,
            cfg=self.test_cfg)
        return bbox_list

    def _bbox_forward_train(self, seg_feats, part_feats, voxels_dict,
                            sampling_results):
        rois = bbox3d2roi([res.bboxes for res in sampling_results])
        bbox_results = self._bbox_forward(seg_feats, part_feats, voxels_dict,
                                          rois)

        bbox_targets = self.bbox_head.get_targets(sampling_results,
                                                  self.train_cfg)
        loss_bbox = self.bbox_head.loss(bbox_results['cls_score'],
                                        bbox_results['bbox_pred'], rois,
                                        *bbox_targets)

        bbox_results.update(loss_bbox=loss_bbox)
        return bbox_results

    def _bbox_forward(self, seg_feats, part_feats, voxels_dict, rois):
        pooled_seg_feats = self.seg_roi_extractor(seg_feats,
                                                  voxels_dict['voxel_centers'],
                                                  voxels_dict['coors'][..., 0],
                                                  rois)
        pooled_part_feats = self.part_roi_extractor(
            part_feats, voxels_dict['voxel_centers'],
            voxels_dict['coors'][..., 0], rois)
        cls_score, bbox_pred = self.bbox_head(pooled_seg_feats,
                                              pooled_part_feats)

        bbox_results = dict(
            cls_score=cls_score,
            bbox_pred=bbox_pred,
            pooled_seg_feats=pooled_seg_feats,
            pooled_part_feats=pooled_part_feats)
        return bbox_results

    def _assign_and_sample(self, proposal_list, gt_bboxes_3d, gt_labels_3d):
        sampling_results = []
        # bbox assign
        for batch_idx in range(len(proposal_list)):
            cur_proposal_list = proposal_list[batch_idx]
            cur_boxes = cur_proposal_list['box3d_lidar']
            cur_label_preds = cur_proposal_list['label_preds']
            cur_gt_bboxes = gt_bboxes_3d[batch_idx]
            cur_gt_labels = gt_labels_3d[batch_idx]

            batch_num_gts = 0
            batch_gt_indis = cur_gt_labels.new_full((cur_boxes.shape[0], ),
                                                    0)  # 0 is bg
            batch_max_overlaps = cur_boxes.new_zeros(cur_boxes.shape[0])
            batch_gt_labels = cur_gt_labels.new_full((cur_boxes.shape[0], ),
                                                     -1)  # -1 is bg
            if isinstance(self.bbox_assigner, list):  # for multi classes
                for i, assigner in enumerate(self.bbox_assigner):
                    gt_per_cls = (cur_gt_labels == i)
                    pred_per_cls = (cur_label_preds == i)
                    cur_assign_res = assigner.assign(
                        cur_boxes[pred_per_cls],
                        cur_gt_bboxes[gt_per_cls],
                        gt_labels=cur_gt_labels[gt_per_cls])
                    # gather assign_results in different class into one result
                    batch_num_gts += cur_assign_res.num_gts
                    # gt inds (1-based)
                    gt_inds_arange_pad = gt_per_cls.nonzero().view(-1) + 1
                    # pad 0 for indice unassigned
                    gt_inds_arange_pad = F.pad(
                        gt_inds_arange_pad, (1, 0), mode='constant', value=0)
                    # pad -1 for indice ignore
                    gt_inds_arange_pad = F.pad(
                        gt_inds_arange_pad, (1, 0), mode='constant', value=-1)
                    # convert to 0~gt_num+2 for indices
                    gt_inds_arange_pad += 1
                    # now 0 is bg, >1 is fg in batch_gt_indis
                    batch_gt_indis[pred_per_cls] = gt_inds_arange_pad[
                        cur_assign_res.gt_inds + 1] - 1
                    batch_max_overlaps[
                        pred_per_cls] = cur_assign_res.max_overlaps
                    batch_gt_labels[pred_per_cls] = cur_assign_res.labels

                assign_result = AssignResult(batch_num_gts, batch_gt_indis,
                                             batch_max_overlaps,
                                             batch_gt_labels)
            else:  # for single class
                assign_result = self.bbox_assigner.assign(
                    cur_boxes, cur_gt_bboxes, gt_labels=cur_gt_labels)
            # sample boxes
            sampling_result = self.bbox_sampler.sample(assign_result,
                                                       cur_boxes,
                                                       cur_gt_bboxes,
                                                       cur_gt_labels)
            sampling_results.append(sampling_result)
        return sampling_results

    def _semantic_forward_train(self, x, voxels_dict, gt_bboxes_3d,
                                gt_labels_3d):
        semantic_results = self.semantic_head(x)
        semantic_targets = self.semantic_head.get_targets(
            voxels_dict, gt_bboxes_3d, gt_labels_3d)
        loss_semantic = self.semantic_head.loss(semantic_results,
                                                semantic_targets)
        semantic_results.update(loss_semantic=loss_semantic)
        return semantic_results