dbsampler.py 11.3 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import copy
3
import mmcv
zhangwenwei's avatar
zhangwenwei committed
4
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
5
6
7
8
import os

from mmdet3d.core.bbox import box_np_ops
from mmdet3d.datasets.pipelines import data_augment_utils
9
from mmdet.datasets import PIPELINES
10
from ..builder import OBJECTSAMPLERS
zhangwenwei's avatar
zhangwenwei committed
11
12
13


class BatchSampler:
wangtai's avatar
wangtai committed
14
15
16
17
    """Class for sampling specific category of ground truths.

    Args:
        sample_list (list[dict]): List of samples.
18
19
20
21
        name (str, optional): The category of samples. Default: None.
        epoch (int, optional): Sampling epoch. Default: None.
        shuffle (bool, optional): Whether to shuffle indices. Default: False.
        drop_reminder (bool, optional): Drop reminder. Default: False.
wangtai's avatar
wangtai committed
22
    """
zhangwenwei's avatar
zhangwenwei committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

    def __init__(self,
                 sampled_list,
                 name=None,
                 epoch=None,
                 shuffle=True,
                 drop_reminder=False):
        self._sampled_list = sampled_list
        self._indices = np.arange(len(sampled_list))
        if shuffle:
            np.random.shuffle(self._indices)
        self._idx = 0
        self._example_num = len(sampled_list)
        self._name = name
        self._shuffle = shuffle
        self._epoch = epoch
        self._epoch_counter = 0
        self._drop_reminder = drop_reminder

    def _sample(self, num):
wangtai's avatar
wangtai committed
43
44
45
46
47
48
49
50
        """Sample specific number of ground truths and return indices.

        Args:
            num (int): Sampled number.

        Returns:
            list[int]: Indices of sampled ground truths.
        """
zhangwenwei's avatar
zhangwenwei committed
51
52
53
54
55
56
57
58
59
        if self._idx + num >= self._example_num:
            ret = self._indices[self._idx:].copy()
            self._reset()
        else:
            ret = self._indices[self._idx:self._idx + num]
            self._idx += num
        return ret

    def _reset(self):
wangtai's avatar
wangtai committed
60
        """Reset the index of batchsampler to zero."""
zhangwenwei's avatar
zhangwenwei committed
61
62
63
64
65
66
67
        assert self._name is not None
        # print("reset", self._name)
        if self._shuffle:
            np.random.shuffle(self._indices)
        self._idx = 0

    def sample(self, num):
wangtai's avatar
wangtai committed
68
69
70
71
72
73
74
75
        """Sample specific number of ground truths.

        Args:
            num (int): Sampled number.

        Returns:
            list[dict]: Sampled ground truths.
        """
zhangwenwei's avatar
zhangwenwei committed
76
77
78
79
        indices = self._sample(num)
        return [self._sampled_list[i] for i in indices]


80
@OBJECTSAMPLERS.register_module()
zhangwenwei's avatar
zhangwenwei committed
81
class DataBaseSampler(object):
82
83
84
85
86
87
88
89
    """Class for sampling data from the ground truth database.

    Args:
        info_path (str): Path of groundtruth database info.
        data_root (str): Path of groundtruth database.
        rate (float): Rate of actual sampled over maximum sampled number.
        prepare (dict): Name of preparation functions and the input value.
        sample_groups (dict): Sampled classes and numbers.
90
91
92
        classes (list[str], optional): List of classes. Default: None.
        points_loader(dict, optional): Config of points loader. Default:
            dict(type='LoadPointsFromFile', load_dim=4, use_dim=[0,1,2,3])
93
    """
zhangwenwei's avatar
zhangwenwei committed
94

zhangwenwei's avatar
zhangwenwei committed
95
96
97
98
99
100
    def __init__(self,
                 info_path,
                 data_root,
                 rate,
                 prepare,
                 sample_groups,
101
102
103
                 classes=None,
                 points_loader=dict(
                     type='LoadPointsFromFile',
104
                     coord_type='LIDAR',
105
106
                     load_dim=4,
                     use_dim=[0, 1, 2, 3])):
zhangwenwei's avatar
zhangwenwei committed
107
        super().__init__()
zhangwenwei's avatar
zhangwenwei committed
108
        self.data_root = data_root
zhangwenwei's avatar
zhangwenwei committed
109
110
111
        self.info_path = info_path
        self.rate = rate
        self.prepare = prepare
zhangwenwei's avatar
zhangwenwei committed
112
113
114
        self.classes = classes
        self.cat2label = {name: i for i, name in enumerate(classes)}
        self.label2cat = {i: name for i, name in enumerate(classes)}
115
        self.points_loader = mmcv.build_from_cfg(points_loader, PIPELINES)
zhangwenwei's avatar
zhangwenwei committed
116

117
        db_infos = mmcv.load(info_path)
zhangwenwei's avatar
zhangwenwei committed
118
119

        # filter database infos
zhangwenwei's avatar
zhangwenwei committed
120
        from mmdet3d.utils import get_root_logger
zhangwenwei's avatar
zhangwenwei committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        logger = get_root_logger()
        for k, v in db_infos.items():
            logger.info(f'load {len(v)} {k} database infos')
        for prep_func, val in prepare.items():
            db_infos = getattr(self, prep_func)(db_infos, val)
        logger.info('After filter database:')
        for k, v in db_infos.items():
            logger.info(f'load {len(v)} {k} database infos')

        self.db_infos = db_infos

        # load sample groups
        # TODO: more elegant way to load sample groups
        self.sample_groups = []
        for name, num in sample_groups.items():
            self.sample_groups.append({name: int(num)})

        self.group_db_infos = self.db_infos  # just use db_infos
        self.sample_classes = []
        self.sample_max_nums = []
        for group_info in self.sample_groups:
            self.sample_classes += list(group_info.keys())
            self.sample_max_nums += list(group_info.values())

        self.sampler_dict = {}
        for k, v in self.group_db_infos.items():
            self.sampler_dict[k] = BatchSampler(v, k, shuffle=True)
        # TODO: No group_sampling currently

    @staticmethod
    def filter_by_difficulty(db_infos, removed_difficulty):
152
153
154
155
156
157
158
159
160
        """Filter ground truths by difficulties.

        Args:
            db_infos (dict): Info of groundtruth database.
            removed_difficulty (list): Difficulties that are not qualified.

        Returns:
            dict: Info of database after filtering.
        """
zhangwenwei's avatar
zhangwenwei committed
161
162
163
164
165
166
167
168
169
170
        new_db_infos = {}
        for key, dinfos in db_infos.items():
            new_db_infos[key] = [
                info for info in dinfos
                if info['difficulty'] not in removed_difficulty
            ]
        return new_db_infos

    @staticmethod
    def filter_by_min_points(db_infos, min_gt_points_dict):
171
172
173
174
175
176
177
178
179
180
        """Filter ground truths by number of points in the bbox.

        Args:
            db_infos (dict): Info of groundtruth database.
            min_gt_points_dict (dict): Different number of minimum points
                needed for different categories of ground truths.

        Returns:
            dict: Info of database after filtering.
        """
zhangwenwei's avatar
zhangwenwei committed
181
182
183
184
185
186
187
188
189
190
        for name, min_num in min_gt_points_dict.items():
            min_num = int(min_num)
            if min_num > 0:
                filtered_infos = []
                for info in db_infos[name]:
                    if info['num_points_in_gt'] >= min_num:
                        filtered_infos.append(info)
                db_infos[name] = filtered_infos
        return db_infos

zhangwenwei's avatar
zhangwenwei committed
191
    def sample_all(self, gt_bboxes, gt_labels, img=None):
192
193
194
195
        """Sampling all categories of bboxes.

        Args:
            gt_bboxes (np.ndarray): Ground truth bounding boxes.
liyinhao's avatar
liyinhao committed
196
            gt_labels (np.ndarray): Ground truth labels of boxes.
197
198
199
200

        Returns:
            dict: Dict of sampled 'pseudo ground truths'.

201
                - gt_labels_3d (np.ndarray): ground truths labels
zhangwenwei's avatar
zhangwenwei committed
202
                    of sampled objects.
203
                - gt_bboxes_3d (:obj:`BaseInstance3DBoxes`):
liyinhao's avatar
liyinhao committed
204
                    sampled ground truth 3D bounding boxes
205
206
207
                - points (np.ndarray): sampled points
                - group_ids (np.ndarray): ids of sampled ground truths
        """
zhangwenwei's avatar
zhangwenwei committed
208
209
210
211
        sampled_num_dict = {}
        sample_num_per_class = []
        for class_name, max_sample_num in zip(self.sample_classes,
                                              self.sample_max_nums):
zhangwenwei's avatar
zhangwenwei committed
212
213
214
            class_label = self.cat2label[class_name]
            # sampled_num = int(max_sample_num -
            #                   np.sum([n == class_name for n in gt_names]))
zhangwenwei's avatar
zhangwenwei committed
215
            sampled_num = int(max_sample_num -
zhangwenwei's avatar
zhangwenwei committed
216
                              np.sum([n == class_label for n in gt_labels]))
zhangwenwei's avatar
zhangwenwei committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
            sampled_num = np.round(self.rate * sampled_num).astype(np.int64)
            sampled_num_dict[class_name] = sampled_num
            sample_num_per_class.append(sampled_num)

        sampled = []
        sampled_gt_bboxes = []
        avoid_coll_boxes = gt_bboxes

        for class_name, sampled_num in zip(self.sample_classes,
                                           sample_num_per_class):
            if sampled_num > 0:
                sampled_cls = self.sample_class_v2(class_name, sampled_num,
                                                   avoid_coll_boxes)

                sampled += sampled_cls
                if len(sampled_cls) > 0:
                    if len(sampled_cls) == 1:
                        sampled_gt_box = sampled_cls[0]['box3d_lidar'][
                            np.newaxis, ...]
                    else:
                        sampled_gt_box = np.stack(
                            [s['box3d_lidar'] for s in sampled_cls], axis=0)

                    sampled_gt_bboxes += [sampled_gt_box]
                    avoid_coll_boxes = np.concatenate(
                        [avoid_coll_boxes, sampled_gt_box], axis=0)

        ret = None
        if len(sampled) > 0:
            sampled_gt_bboxes = np.concatenate(sampled_gt_bboxes, axis=0)
            # center = sampled_gt_bboxes[:, 0:3]

zhangwenwei's avatar
zhangwenwei committed
249
            # num_sampled = len(sampled)
zhangwenwei's avatar
zhangwenwei committed
250
251
252
253
            s_points_list = []
            count = 0
            for info in sampled:
                file_path = os.path.join(
zhangwenwei's avatar
zhangwenwei committed
254
255
                    self.data_root,
                    info['path']) if self.data_root else info['path']
256
257
                results = dict(pts_filename=file_path)
                s_points = self.points_loader(results)['points']
258
                s_points.translate(info['box3d_lidar'][:3])
zhangwenwei's avatar
zhangwenwei committed
259
260
261
262

                count += 1

                s_points_list.append(s_points)
263
264
265

            gt_labels = np.array([self.cat2label[s['name']] for s in sampled],
                                 dtype=np.long)
zhangwenwei's avatar
zhangwenwei committed
266
            ret = {
zhangwenwei's avatar
zhangwenwei committed
267
268
                'gt_labels_3d':
                gt_labels,
zhangwenwei's avatar
zhangwenwei committed
269
270
271
                'gt_bboxes_3d':
                sampled_gt_bboxes,
                'points':
272
                s_points_list[0].cat(s_points_list),
zhangwenwei's avatar
zhangwenwei committed
273
274
275
276
277
278
279
280
                'group_ids':
                np.arange(gt_bboxes.shape[0],
                          gt_bboxes.shape[0] + len(sampled))
            }

        return ret

    def sample_class_v2(self, name, num, gt_bboxes):
281
282
283
284
285
286
287
288
289
290
        """Sampling specific categories of bounding boxes.

        Args:
            name (str): Class of objects to be sampled.
            num (int): Number of sampled bboxes.
            gt_bboxes (np.ndarray): Ground truth boxes.

        Returns:
            list[dict]: Valid samples after collision test.
        """
zhangwenwei's avatar
zhangwenwei committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        sampled = self.sampler_dict[name].sample(num)
        sampled = copy.deepcopy(sampled)
        num_gt = gt_bboxes.shape[0]
        num_sampled = len(sampled)
        gt_bboxes_bv = box_np_ops.center_to_corner_box2d(
            gt_bboxes[:, 0:2], gt_bboxes[:, 3:5], gt_bboxes[:, 6])

        sp_boxes = np.stack([i['box3d_lidar'] for i in sampled], axis=0)
        boxes = np.concatenate([gt_bboxes, sp_boxes], axis=0).copy()

        sp_boxes_new = boxes[gt_bboxes.shape[0]:]
        sp_boxes_bv = box_np_ops.center_to_corner_box2d(
            sp_boxes_new[:, 0:2], sp_boxes_new[:, 3:5], sp_boxes_new[:, 6])

        total_bv = np.concatenate([gt_bboxes_bv, sp_boxes_bv], axis=0)
        coll_mat = data_augment_utils.box_collision_test(total_bv, total_bv)
        diag = np.arange(total_bv.shape[0])
        coll_mat[diag, diag] = False

        valid_samples = []
        for i in range(num_gt, num_gt + num_sampled):
            if coll_mat[i].any():
                coll_mat[i] = False
                coll_mat[:, i] = False
            else:
                valid_samples.append(sampled[i - num_gt])
        return valid_samples