lyft_dataset.py 21.8 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
wangtai's avatar
wangtai committed
2
3
import mmcv
import numpy as np
4
import os
wangtai's avatar
wangtai committed
5
import pandas as pd
zhangwenwei's avatar
zhangwenwei committed
6
import tempfile
wangtai's avatar
wangtai committed
7
8
from lyft_dataset_sdk.lyftdataset import LyftDataset as Lyft
from lyft_dataset_sdk.utils.data_classes import Box as LyftBox
zhangwenwei's avatar
zhangwenwei committed
9
from os import path as osp
wangtai's avatar
wangtai committed
10
11
12
13
from pyquaternion import Quaternion

from mmdet3d.core.evaluation.lyft_eval import lyft_eval
from mmdet.datasets import DATASETS
wangtai's avatar
wangtai committed
14
from ..core import show_result
15
from ..core.bbox import Box3DMode, Coord3DMode, LiDARInstance3DBoxes
wangtai's avatar
wangtai committed
16
from .custom_3d import Custom3DDataset
17
from .pipelines import Compose
wangtai's avatar
wangtai committed
18
19
20
21


@DATASETS.register_module()
class LyftDataset(Custom3DDataset):
wangtai's avatar
wangtai committed
22
    r"""Lyft Dataset.
wangtai's avatar
wangtai committed
23
24
25
26

    This class serves as the API for experiments on the Lyft Dataset.

    Please refer to
27
    `<https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/data>`_
zhangwenwei's avatar
zhangwenwei committed
28
    for data downloading.
wangtai's avatar
wangtai committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

    Args:
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        data_root (str): Path of dataset root.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        load_interval (int, optional): Interval of loading the dataset. It is
            used to uniformly sample the dataset. Defaults to 1.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'LiDAR' in this dataset. Available options includes

wangtai's avatar
wangtai committed
46
47
48
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
wangtai's avatar
wangtai committed
49
50
51
52
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
53
    """  # noqa: E501
wangtai's avatar
wangtai committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    NameMapping = {
        'bicycle': 'bicycle',
        'bus': 'bus',
        'car': 'car',
        'emergency_vehicle': 'emergency_vehicle',
        'motorcycle': 'motorcycle',
        'other_vehicle': 'other_vehicle',
        'pedestrian': 'pedestrian',
        'truck': 'truck',
        'animal': 'animal'
    }
    DefaultAttribute = {
        'car': 'is_stationary',
        'truck': 'is_stationary',
        'bus': 'is_stationary',
        'emergency_vehicle': 'is_stationary',
        'other_vehicle': 'is_stationary',
        'motorcycle': 'is_stationary',
        'bicycle': 'is_stationary',
        'pedestrian': 'is_stationary',
        'animal': 'is_stationary'
    }
    CLASSES = ('car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle',
               'motorcycle', 'bicycle', 'pedestrian', 'animal')

    def __init__(self,
                 ann_file,
                 pipeline=None,
                 data_root=None,
                 classes=None,
                 load_interval=1,
                 modality=None,
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
                 test_mode=False):
        self.load_interval = load_interval
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
            test_mode=test_mode)

        if self.modality is None:
            self.modality = dict(
                use_camera=False,
                use_lidar=True,
                use_radar=False,
                use_map=False,
                use_external=False,
            )

    def load_annotations(self, ann_file):
        """Load annotations from ann_file.

        Args:
            ann_file (str): Path of the annotation file.

        Returns:
            list[dict]: List of annotations sorted by timestamps.
        """
        data = mmcv.load(ann_file)
        data_infos = list(sorted(data['infos'], key=lambda e: e['timestamp']))
        data_infos = data_infos[::self.load_interval]
        self.metadata = data['metadata']
        self.version = self.metadata['version']
        return data_infos

    def get_data_info(self, index):
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
132
            dict: Data information that will be passed to the data
zhangwenwei's avatar
zhangwenwei committed
133
                preprocessing pipelines. It includes the following keys:
wangtai's avatar
wangtai committed
134
135
136
137
138
139

                - sample_idx (str): sample index
                - pts_filename (str): filename of point clouds
                - sweeps (list[dict]): infos of sweeps
                - timestamp (float): sample timestamp
                - img_filename (str, optional): image filename
140
                - lidar2img (list[np.ndarray], optional): transformations
zhangwenwei's avatar
zhangwenwei committed
141
                    from lidar to different cameras
wangtai's avatar
wangtai committed
142
143
144
145
                - ann_info (dict): annotation info
        """
        info = self.data_infos[index]

146
        # standard protocol modified from SECOND.Pytorch
wangtai's avatar
wangtai committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        input_dict = dict(
            sample_idx=info['token'],
            pts_filename=info['lidar_path'],
            sweeps=info['sweeps'],
            timestamp=info['timestamp'] / 1e6,
        )

        if self.modality['use_camera']:
            image_paths = []
            lidar2img_rts = []
            for cam_type, cam_info in info['cams'].items():
                image_paths.append(cam_info['data_path'])
                # obtain lidar to image transformation matrix
                lidar2cam_r = np.linalg.inv(cam_info['sensor2lidar_rotation'])
                lidar2cam_t = cam_info[
                    'sensor2lidar_translation'] @ lidar2cam_r.T
                lidar2cam_rt = np.eye(4)
                lidar2cam_rt[:3, :3] = lidar2cam_r.T
                lidar2cam_rt[3, :3] = -lidar2cam_t
                intrinsic = cam_info['cam_intrinsic']
                viewpad = np.eye(4)
                viewpad[:intrinsic.shape[0], :intrinsic.shape[1]] = intrinsic
                lidar2img_rt = (viewpad @ lidar2cam_rt.T)
                lidar2img_rts.append(lidar2img_rt)

            input_dict.update(
                dict(
                    img_filename=image_paths,
                    lidar2img=lidar2img_rts,
                ))

        if not self.test_mode:
            annos = self.get_ann_info(index)
            input_dict['ann_info'] = annos

        return input_dict

    def get_ann_info(self, index):
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
wangtai's avatar
wangtai committed
191
            dict: Annotation information consists of the following keys:
wangtai's avatar
wangtai committed
192

193
                - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`):
wangtai's avatar
wangtai committed
194
195
196
                    3D ground truth bboxes.
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - gt_names (list[str]): Class names of ground truths.
wangtai's avatar
wangtai committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        """
        info = self.data_infos[index]
        gt_bboxes_3d = info['gt_boxes']
        gt_names_3d = info['gt_names']
        gt_labels_3d = []
        for cat in gt_names_3d:
            if cat in self.CLASSES:
                gt_labels_3d.append(self.CLASSES.index(cat))
            else:
                gt_labels_3d.append(-1)
        gt_labels_3d = np.array(gt_labels_3d)

        if 'gt_shape' in info:
            gt_shape = info['gt_shape']
            gt_bboxes_3d = np.concatenate([gt_bboxes_3d, gt_shape], axis=-1)

        # the lyft box center is [0.5, 0.5, 0.5], we change it to be
        # the same as KITTI (0.5, 0.5, 0)
        gt_bboxes_3d = LiDARInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
            gt_labels_3d=gt_labels_3d,
        )
        return anns_results

    def _format_bbox(self, results, jsonfile_prefix=None):
        """Convert the results to the standard format.

        Args:
            results (list[dict]): Testing results of the dataset.
            jsonfile_prefix (str): The prefix of the output jsonfile.
                You can specify the output directory/filename by
                modifying the jsonfile_prefix. Default: None.

        Returns:
            str: Path of the output json file.
        """
        lyft_annos = {}
        mapped_class_names = self.CLASSES

        print('Start to convert detection format...')
        for sample_id, det in enumerate(mmcv.track_iter_progress(results)):
            annos = []
            boxes = output_to_lyft_box(det)
            sample_token = self.data_infos[sample_id]['token']
            boxes = lidar_lyft_box_to_global(self.data_infos[sample_id], boxes)
            for i, box in enumerate(boxes):
                name = mapped_class_names[box.label]
                lyft_anno = dict(
                    sample_token=sample_token,
                    translation=box.center.tolist(),
                    size=box.wlh.tolist(),
                    rotation=box.orientation.elements.tolist(),
                    name=name,
                    score=box.score)
                annos.append(lyft_anno)
            lyft_annos[sample_token] = annos
        lyft_submissions = {
            'meta': self.modality,
            'results': lyft_annos,
        }

        mmcv.mkdir_or_exist(jsonfile_prefix)
        res_path = osp.join(jsonfile_prefix, 'results_lyft.json')
        print('Results writes to', res_path)
        mmcv.dump(lyft_submissions, res_path)
        return res_path

    def _evaluate_single(self,
                         result_path,
                         logger=None,
                         metric='bbox',
                         result_name='pts_bbox'):
        """Evaluation for a single model in Lyft protocol.

        Args:
            result_path (str): Path of the result file.
278
            logger (logging.Logger | str, optional): Logger used for printing
wangtai's avatar
wangtai committed
279
                related information during evaluation. Default: None.
280
281
282
            metric (str, optional): Metric name used for evaluation.
                Default: 'bbox'.
            result_name (str, optional): Result name in the metric prefix.
wangtai's avatar
wangtai committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
                Default: 'pts_bbox'.

        Returns:
            dict: Dictionary of evaluation details.
        """

        output_dir = osp.join(*osp.split(result_path)[:-1])
        lyft = Lyft(
            data_path=osp.join(self.data_root, self.version),
            json_path=osp.join(self.data_root, self.version, self.version),
            verbose=True)
        eval_set_map = {
            'v1.01-train': 'val',
        }
        metrics = lyft_eval(lyft, self.data_root, result_path,
                            eval_set_map[self.version], output_dir, logger)

        # record metrics
        detail = dict()
        metric_prefix = f'{result_name}_Lyft'

        for i, name in enumerate(metrics['class_names']):
305
            AP = float(metrics['mAPs_cate'][i])
wangtai's avatar
wangtai committed
306
307
308
309
310
311
312
313
314
315
            detail[f'{metric_prefix}/{name}_AP'] = AP

        detail[f'{metric_prefix}/mAP'] = metrics['Final mAP']
        return detail

    def format_results(self, results, jsonfile_prefix=None, csv_savepath=None):
        """Format the results to json (standard format for COCO evaluation).

        Args:
            results (list[dict]): Testing results of the dataset.
316
            jsonfile_prefix (str): The prefix of json files. It includes
wangtai's avatar
wangtai committed
317
318
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
319
            csv_savepath (str): The path for saving csv files.
wangtai's avatar
wangtai committed
320
321
322
323
324
                It includes the file path and the csv filename,
                e.g., "a/b/filename.csv". If not specified,
                the result will not be converted to csv file.

        Returns:
325
326
327
            tuple: Returns (result_files, tmp_dir), where `result_files` is a
                dict containing the json filepaths, `tmp_dir` is the temporal
                directory created for saving json files when
zhangwenwei's avatar
zhangwenwei committed
328
                `jsonfile_prefix` is not specified.
wangtai's avatar
wangtai committed
329
330
331
332
333
334
335
336
337
338
339
340
        """
        assert isinstance(results, list), 'results must be a list'
        assert len(results) == len(self), (
            'The length of results is not equal to the dataset len: {} != {}'.
            format(len(results), len(self)))

        if jsonfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            jsonfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None

341
342
343
344
345
346
347
        # currently the output prediction results could be in two formats
        # 1. list of dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...)
        # 2. list of dict('pts_bbox' or 'img_bbox':
        #     dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...))
        # this is a workaround to enable evaluation of both formats on Lyft
        # refer to https://github.com/open-mmlab/mmdetection3d/issues/449
        if not ('pts_bbox' in results[0] or 'img_bbox' in results[0]):
wangtai's avatar
wangtai committed
348
349
            result_files = self._format_bbox(results, jsonfile_prefix)
        else:
350
            # should take the inner dict out of 'pts_bbox' or 'img_bbox' dict
wangtai's avatar
wangtai committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
            result_files = dict()
            for name in results[0]:
                print(f'\nFormating bboxes of {name}')
                results_ = [out[name] for out in results]
                tmp_file_ = osp.join(jsonfile_prefix, name)
                result_files.update(
                    {name: self._format_bbox(results_, tmp_file_)})
        if csv_savepath is not None:
            self.json2csv(result_files['pts_bbox'], csv_savepath)
        return result_files, tmp_dir

    def evaluate(self,
                 results,
                 metric='bbox',
                 logger=None,
                 jsonfile_prefix=None,
                 csv_savepath=None,
wangtai's avatar
wangtai committed
368
369
                 result_names=['pts_bbox'],
                 show=False,
370
371
                 out_dir=None,
                 pipeline=None):
wangtai's avatar
wangtai committed
372
373
374
375
        """Evaluation in Lyft protocol.

        Args:
            results (list[dict]): Testing results of the dataset.
376
377
378
            metric (str | list[str], optional): Metrics to be evaluated.
                Default: 'bbox'.
            logger (logging.Logger | str, optional): Logger used for printing
wangtai's avatar
wangtai committed
379
                related information during evaluation. Default: None.
380
            jsonfile_prefix (str, optional): The prefix of json files including
wangtai's avatar
wangtai committed
381
382
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
383
            csv_savepath (str, optional): The path for saving csv files.
wangtai's avatar
wangtai committed
384
385
386
                It includes the file path and the csv filename,
                e.g., "a/b/filename.csv". If not specified,
                the result will not be converted to csv file.
387
388
389
            result_names (list[str], optional): Result names in the
                metric prefix. Default: ['pts_bbox'].
            show (bool, optional): Whether to visualize.
wangtai's avatar
wangtai committed
390
                Default: False.
391
            out_dir (str, optional): Path to save the visualization results.
wangtai's avatar
wangtai committed
392
                Default: None.
393
394
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
wangtai's avatar
wangtai committed
395
396

        Returns:
397
            dict[str, float]: Evaluation results.
wangtai's avatar
wangtai committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
        """
        result_files, tmp_dir = self.format_results(results, jsonfile_prefix,
                                                    csv_savepath)

        if isinstance(result_files, dict):
            results_dict = dict()
            for name in result_names:
                print(f'Evaluating bboxes of {name}')
                ret_dict = self._evaluate_single(result_files[name])
            results_dict.update(ret_dict)
        elif isinstance(result_files, str):
            results_dict = self._evaluate_single(result_files)

        if tmp_dir is not None:
            tmp_dir.cleanup()
wangtai's avatar
wangtai committed
413

414
415
        if show or out_dir:
            self.show(results, out_dir, show=show, pipeline=pipeline)
wangtai's avatar
wangtai committed
416
417
        return results_dict

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='LIDAR',
                load_dim=5,
                use_dim=5,
                file_client_args=dict(backend='disk')),
            dict(
                type='LoadPointsFromMultiSweeps',
                sweeps_num=10,
                file_client_args=dict(backend='disk')),
            dict(
                type='DefaultFormatBundle3D',
                class_names=self.CLASSES,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ]
        return Compose(pipeline)

439
    def show(self, results, out_dir, show=False, pipeline=None):
wangtai's avatar
wangtai committed
440
441
442
443
444
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
445
446
            show (bool): Whether to visualize the results online.
                Default: False.
447
448
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
wangtai's avatar
wangtai committed
449
        """
450
451
        assert out_dir is not None, 'Expect out_dir, got none.'
        pipeline = self._get_pipeline(pipeline)
wangtai's avatar
wangtai committed
452
        for i, result in enumerate(results):
453
454
            if 'pts_bbox' in result.keys():
                result = result['pts_bbox']
wangtai's avatar
wangtai committed
455
456
457
            data_info = self.data_infos[i]
            pts_path = data_info['lidar_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
458
            points = self._extract_data(i, pipeline, 'points').numpy()
459
460
            points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR,
                                               Coord3DMode.DEPTH)
461
            inds = result['scores_3d'] > 0.1
462
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
463
464
465
466
467
468
469
            show_gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR,
                                               Box3DMode.DEPTH)
            pred_bboxes = result['boxes_3d'][inds].tensor.numpy()
            show_pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR,
                                                 Box3DMode.DEPTH)
            show_result(points, show_gt_bboxes, show_pred_bboxes, out_dir,
                        file_name, show)
wangtai's avatar
wangtai committed
470

471
    def json2csv(self, json_path, csv_savepath):
wangtai's avatar
wangtai committed
472
473
474
475
476
477
        """Convert the json file to csv format for submission.

        Args:
            json_path (str): Path of the result json file.
            csv_savepath (str): Path to save the csv file.
        """
478
479
480
        results = mmcv.load(json_path)['results']
        sample_list_path = osp.join(self.data_root, 'sample_submission.csv')
        data = pd.read_csv(sample_list_path)
wangtai's avatar
wangtai committed
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
        Id_list = list(data['Id'])
        pred_list = list(data['PredictionString'])
        cnt = 0
        print('Converting the json to csv...')
        for token in results.keys():
            cnt += 1
            predictions = results[token]
            prediction_str = ''
            for i in range(len(predictions)):
                prediction_str += \
                    str(predictions[i]['score']) + ' ' + \
                    str(predictions[i]['translation'][0]) + ' ' + \
                    str(predictions[i]['translation'][1]) + ' ' + \
                    str(predictions[i]['translation'][2]) + ' ' + \
                    str(predictions[i]['size'][0]) + ' ' + \
                    str(predictions[i]['size'][1]) + ' ' + \
                    str(predictions[i]['size'][2]) + ' ' + \
                    str(Quaternion(list(predictions[i]['rotation']))
                        .yaw_pitch_roll[0]) + ' ' + \
                    predictions[i]['name'] + ' '
            prediction_str = prediction_str[:-1]
            idx = Id_list.index(token)
            pred_list[idx] = prediction_str
        df = pd.DataFrame({'Id': Id_list, 'PredictionString': pred_list})
505
        mmcv.mkdir_or_exist(os.path.dirname(csv_savepath))
wangtai's avatar
wangtai committed
506
507
508
509
510
511
512
513
514
515
        df.to_csv(csv_savepath, index=False)


def output_to_lyft_box(detection):
    """Convert the output to the box class in the Lyft.

    Args:
        detection (dict): Detection results.

    Returns:
zhangwenwei's avatar
zhangwenwei committed
516
        list[:obj:`LyftBox`]: List of standard LyftBoxes.
wangtai's avatar
wangtai committed
517
518
519
520
521
522
523
524
    """
    box3d = detection['boxes_3d']
    scores = detection['scores_3d'].numpy()
    labels = detection['labels_3d'].numpy()

    box_gravity_center = box3d.gravity_center.numpy()
    box_dims = box3d.dims.numpy()
    box_yaw = box3d.yaw.numpy()
525
526
527

    # our LiDAR coordinate system -> Lyft box coordinate system
    lyft_box_dims = box_dims[:, [1, 0, 2]]
wangtai's avatar
wangtai committed
528
529
530
531
532
533

    box_list = []
    for i in range(len(box3d)):
        quat = Quaternion(axis=[0, 0, 1], radians=box_yaw[i])
        box = LyftBox(
            box_gravity_center[i],
534
            lyft_box_dims[i],
wangtai's avatar
wangtai committed
535
536
537
538
539
540
541
542
543
544
545
546
547
            quat,
            label=labels[i],
            score=scores[i])
        box_list.append(box)
    return box_list


def lidar_lyft_box_to_global(info, boxes):
    """Convert the box from ego to global coordinate.

    Args:
        info (dict): Info for a specific sample data, including the
            calibration information.
zhangwenwei's avatar
zhangwenwei committed
548
        boxes (list[:obj:`LyftBox`]): List of predicted LyftBoxes.
wangtai's avatar
wangtai committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

    Returns:
        list: List of standard LyftBoxes in the global
            coordinate.
    """
    box_list = []
    for box in boxes:
        # Move box to ego vehicle coord system
        box.rotate(Quaternion(info['lidar2ego_rotation']))
        box.translate(np.array(info['lidar2ego_translation']))
        # Move box to global coord system
        box.rotate(Quaternion(info['ego2global_rotation']))
        box.translate(np.array(info['ego2global_translation']))
        box_list.append(box)
    return box_list