tpvformer_encoder.py 15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import numpy as np
import torch
from mmcv.cnn.bricks.transformer import TransformerLayerSequence
from mmengine.registry import MODELS
from torch import nn
from torch.nn.init import normal_

from .cross_view_hybrid_attention import TPVCrossViewHybridAttention
from .image_cross_attention import TPVMSDeformableAttention3D


@MODELS.register_module()
class TPVFormerEncoder(TransformerLayerSequence):

    def __init__(self,
                 tpv_h=200,
                 tpv_w=200,
                 tpv_z=16,
                 pc_range=[-51.2, -51.2, -5, 51.2, 51.2, 3],
                 num_feature_levels=4,
                 num_cams=6,
                 embed_dims=256,
                 num_points_in_pillar=[4, 32, 32],
                 num_points_in_pillar_cross_view=[32, 32, 32],
                 num_layers=5,
                 transformerlayers=None,
                 positional_encoding=None,
                 return_intermediate=False):
        super().__init__(transformerlayers, num_layers)

        self.tpv_h = tpv_h
        self.tpv_w = tpv_w
        self.tpv_z = tpv_z
        self.pc_range = pc_range
        self.real_w = pc_range[3] - pc_range[0]
        self.real_h = pc_range[4] - pc_range[1]
        self.real_z = pc_range[5] - pc_range[2]

        self.level_embeds = nn.Parameter(
            torch.Tensor(num_feature_levels, embed_dims))
        self.cams_embeds = nn.Parameter(torch.Tensor(num_cams, embed_dims))
        self.tpv_embedding_hw = nn.Embedding(tpv_h * tpv_w, embed_dims)
        self.tpv_embedding_zh = nn.Embedding(tpv_z * tpv_h, embed_dims)
        self.tpv_embedding_wz = nn.Embedding(tpv_w * tpv_z, embed_dims)

        ref_3d_hw = self.get_reference_points(tpv_h, tpv_w, self.real_z,
                                              num_points_in_pillar[0])
        ref_3d_zh = self.get_reference_points(tpv_z, tpv_h, self.real_w,
                                              num_points_in_pillar[1])
        ref_3d_zh = ref_3d_zh.permute(3, 0, 1, 2)[[2, 0, 1]]  # change to x,y,z
        ref_3d_zh = ref_3d_zh.permute(1, 2, 3, 0)
        ref_3d_wz = self.get_reference_points(tpv_w, tpv_z, self.real_h,
                                              num_points_in_pillar[2])
        ref_3d_wz = ref_3d_wz.permute(3, 0, 1, 2)[[1, 2, 0]]  # change to x,y,z
        ref_3d_wz = ref_3d_wz.permute(1, 2, 3, 0)
        self.register_buffer('ref_3d_hw', ref_3d_hw)
        self.register_buffer('ref_3d_zh', ref_3d_zh)
        self.register_buffer('ref_3d_wz', ref_3d_wz)

        cross_view_ref_points = self.get_cross_view_ref_points(
            tpv_h, tpv_w, tpv_z, num_points_in_pillar_cross_view)
        self.register_buffer('cross_view_ref_points', cross_view_ref_points)

        # positional encoding
        self.positional_encoding = MODELS.build(positional_encoding)
        self.return_intermediate = return_intermediate

    def init_weights(self):
        """Initialize the transformer weights."""
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        for m in self.modules():
            if isinstance(m, TPVMSDeformableAttention3D) or isinstance(
                    m, TPVCrossViewHybridAttention):
                m.init_weights()
        normal_(self.level_embeds)
        normal_(self.cams_embeds)

    @staticmethod
    def get_cross_view_ref_points(tpv_h, tpv_w, tpv_z, num_points_in_pillar):
        # ref points generating target: (#query)hw+zh+wz, (#level)3, #p, 2
        # generate points for hw and level 1
        h_ranges = torch.linspace(0.5, tpv_h - 0.5, tpv_h) / tpv_h
        w_ranges = torch.linspace(0.5, tpv_w - 0.5, tpv_w) / tpv_w
        h_ranges = h_ranges.unsqueeze(-1).expand(-1, tpv_w).flatten()
        w_ranges = w_ranges.unsqueeze(0).expand(tpv_h, -1).flatten()
        hw_hw = torch.stack([w_ranges, h_ranges], dim=-1)  # hw, 2
        hw_hw = hw_hw.unsqueeze(1).expand(-1, num_points_in_pillar[2],
                                          -1)  # hw, #p, 2
        # generate points for hw and level 2
        z_ranges = torch.linspace(0.5, tpv_z - 0.5,
                                  num_points_in_pillar[2]) / tpv_z  # #p
        z_ranges = z_ranges.unsqueeze(0).expand(tpv_h * tpv_w, -1)  # hw, #p
        h_ranges = torch.linspace(0.5, tpv_h - 0.5, tpv_h) / tpv_h
        h_ranges = h_ranges.reshape(-1, 1, 1).expand(
            -1, tpv_w, num_points_in_pillar[2]).flatten(0, 1)
        hw_zh = torch.stack([h_ranges, z_ranges], dim=-1)  # hw, #p, 2
        # generate points for hw and level 3
        z_ranges = torch.linspace(0.5, tpv_z - 0.5,
                                  num_points_in_pillar[2]) / tpv_z  # #p
        z_ranges = z_ranges.unsqueeze(0).expand(tpv_h * tpv_w, -1)  # hw, #p
        w_ranges = torch.linspace(0.5, tpv_w - 0.5, tpv_w) / tpv_w
        w_ranges = w_ranges.reshape(1, -1, 1).expand(
            tpv_h, -1, num_points_in_pillar[2]).flatten(0, 1)
        hw_wz = torch.stack([z_ranges, w_ranges], dim=-1)  # hw, #p, 2

        # generate points for zh and level 1
        w_ranges = torch.linspace(0.5, tpv_w - 0.5,
                                  num_points_in_pillar[1]) / tpv_w
        w_ranges = w_ranges.unsqueeze(0).expand(tpv_z * tpv_h, -1)
        h_ranges = torch.linspace(0.5, tpv_h - 0.5, tpv_h) / tpv_h
        h_ranges = h_ranges.reshape(1, -1, 1).expand(
            tpv_z, -1, num_points_in_pillar[1]).flatten(0, 1)
        zh_hw = torch.stack([w_ranges, h_ranges], dim=-1)
        # generate points for zh and level 2
        z_ranges = torch.linspace(0.5, tpv_z - 0.5, tpv_z) / tpv_z
        z_ranges = z_ranges.reshape(-1, 1, 1).expand(
            -1, tpv_h, num_points_in_pillar[1]).flatten(0, 1)
        h_ranges = torch.linspace(0.5, tpv_h - 0.5, tpv_h) / tpv_h
        h_ranges = h_ranges.reshape(1, -1, 1).expand(
            tpv_z, -1, num_points_in_pillar[1]).flatten(0, 1)
        zh_zh = torch.stack([h_ranges, z_ranges], dim=-1)  # zh, #p, 2
        # generate points for zh and level 3
        w_ranges = torch.linspace(0.5, tpv_w - 0.5,
                                  num_points_in_pillar[1]) / tpv_w
        w_ranges = w_ranges.unsqueeze(0).expand(tpv_z * tpv_h, -1)
        z_ranges = torch.linspace(0.5, tpv_z - 0.5, tpv_z) / tpv_z
        z_ranges = z_ranges.reshape(-1, 1, 1).expand(
            -1, tpv_h, num_points_in_pillar[1]).flatten(0, 1)
        zh_wz = torch.stack([z_ranges, w_ranges], dim=-1)

        # generate points for wz and level 1
        h_ranges = torch.linspace(0.5, tpv_h - 0.5,
                                  num_points_in_pillar[0]) / tpv_h
        h_ranges = h_ranges.unsqueeze(0).expand(tpv_w * tpv_z, -1)
        w_ranges = torch.linspace(0.5, tpv_w - 0.5, tpv_w) / tpv_w
        w_ranges = w_ranges.reshape(-1, 1, 1).expand(
            -1, tpv_z, num_points_in_pillar[0]).flatten(0, 1)
        wz_hw = torch.stack([w_ranges, h_ranges], dim=-1)
        # generate points for wz and level 2
        h_ranges = torch.linspace(0.5, tpv_h - 0.5,
                                  num_points_in_pillar[0]) / tpv_h
        h_ranges = h_ranges.unsqueeze(0).expand(tpv_w * tpv_z, -1)
        z_ranges = torch.linspace(0.5, tpv_z - 0.5, tpv_z) / tpv_z
        z_ranges = z_ranges.reshape(1, -1, 1).expand(
            tpv_w, -1, num_points_in_pillar[0]).flatten(0, 1)
        wz_zh = torch.stack([h_ranges, z_ranges], dim=-1)
        # generate points for wz and level 3
        w_ranges = torch.linspace(0.5, tpv_w - 0.5, tpv_w) / tpv_w
        w_ranges = w_ranges.reshape(-1, 1, 1).expand(
            -1, tpv_z, num_points_in_pillar[0]).flatten(0, 1)
        z_ranges = torch.linspace(0.5, tpv_z - 0.5, tpv_z) / tpv_z
        z_ranges = z_ranges.reshape(1, -1, 1).expand(
            tpv_w, -1, num_points_in_pillar[0]).flatten(0, 1)
        wz_wz = torch.stack([z_ranges, w_ranges], dim=-1)

        reference_points = torch.cat([
            torch.stack([hw_hw, hw_zh, hw_wz], dim=1),
            torch.stack([zh_hw, zh_zh, zh_wz], dim=1),
            torch.stack([wz_hw, wz_zh, wz_wz], dim=1)
        ],
                                     dim=0)  # hw+zh+wz, 3, #p, 2

        return reference_points

    @staticmethod
    def get_reference_points(H,
                             W,
                             Z=8,
                             num_points_in_pillar=4,
                             dim='3d',
                             bs=1,
                             device='cuda',
                             dtype=torch.float):
        """Get the reference points used in SCA and TSA.

        Args:
            H, W: spatial shape of tpv.
            Z: height of pillar.
            device (obj:`device`): The device where
                reference_points should be.
        Returns:
            Tensor: reference points used in decoder, has \
                shape (bs, num_keys, num_levels, 2).
        """

        # reference points in 3D space, used in spatial cross-attention (SCA)
        zs = torch.linspace(
            0.5, Z - 0.5, num_points_in_pillar,
            dtype=dtype, device=device).view(-1, 1, 1).expand(
                num_points_in_pillar, H, W) / Z
        xs = torch.linspace(
            0.5, W - 0.5, W, dtype=dtype, device=device).view(1, 1, -1).expand(
                num_points_in_pillar, H, W) / W
        ys = torch.linspace(
            0.5, H - 0.5, H, dtype=dtype, device=device).view(1, -1, 1).expand(
                num_points_in_pillar, H, W) / H
        ref_3d = torch.stack((xs, ys, zs), -1)
        ref_3d = ref_3d.permute(0, 3, 1, 2).flatten(2).permute(0, 2, 1)
        ref_3d = ref_3d[None].repeat(bs, 1, 1, 1)
        return ref_3d

    def point_sampling(self, reference_points, pc_range, batch_data_smaples):

        lidar2img = []
        for data_sample in batch_data_smaples:
            lidar2img.append(data_sample.lidar2img)
        lidar2img = np.asarray(lidar2img)
        lidar2img = reference_points.new_tensor(lidar2img)  # (B, N, 4, 4)
        reference_points = reference_points.clone()

        reference_points[..., 0:1] = reference_points[..., 0:1] * \
            (pc_range[3] - pc_range[0]) + pc_range[0]
        reference_points[..., 1:2] = reference_points[..., 1:2] * \
            (pc_range[4] - pc_range[1]) + pc_range[1]
        reference_points[..., 2:3] = reference_points[..., 2:3] * \
            (pc_range[5] - pc_range[2]) + pc_range[2]

        reference_points = torch.cat(
            (reference_points, torch.ones_like(reference_points[..., :1])), -1)

        reference_points = reference_points.permute(1, 0, 2, 3)
        D, B, num_query = reference_points.size()[:3]
        num_cam = lidar2img.size(1)

        reference_points = reference_points.view(D, B, 1, num_query, 4).repeat(
            1, 1, num_cam, 1, 1).unsqueeze(-1)

        lidar2img = lidar2img.view(1, B, num_cam, 1, 4,
                                   4).repeat(D, 1, 1, num_query, 1, 1)

        reference_points_cam = torch.matmul(
            lidar2img.to(torch.float32),
            reference_points.to(torch.float32)).squeeze(-1)
        eps = 1e-5

        tpv_mask = (reference_points_cam[..., 2:3] > eps)
        reference_points_cam = reference_points_cam[..., 0:2] / torch.maximum(
            reference_points_cam[..., 2:3],
            torch.ones_like(reference_points_cam[..., 2:3]) * eps)

        reference_points_cam[..., 0] /= data_sample.batch_input_shape[1]
        reference_points_cam[..., 1] /= data_sample.batch_input_shape[0]

        tpv_mask = (
            tpv_mask & (reference_points_cam[..., 1:2] > 0.0)
            & (reference_points_cam[..., 1:2] < 1.0)
            & (reference_points_cam[..., 0:1] < 1.0)
            & (reference_points_cam[..., 0:1] > 0.0))

        tpv_mask = torch.nan_to_num(tpv_mask)

        reference_points_cam = reference_points_cam.permute(2, 1, 3, 0, 4)
        tpv_mask = tpv_mask.permute(2, 1, 3, 0, 4).squeeze(-1)

        return reference_points_cam, tpv_mask

    def forward(self, mlvl_feats, batch_data_samples):
        """Forward function.

        Args:
            mlvl_feats (tuple[Tensor]): Features from the upstream
                network, each is a 5D-tensor with shape
                (B, N, C, H, W).
        """
        bs = mlvl_feats[0].shape[0]
        dtype = mlvl_feats[0].dtype
        device = mlvl_feats[0].device

        # tpv queries and pos embeds
        tpv_queries_hw = self.tpv_embedding_hw.weight.to(dtype)
        tpv_queries_zh = self.tpv_embedding_zh.weight.to(dtype)
        tpv_queries_wz = self.tpv_embedding_wz.weight.to(dtype)
        tpv_queries_hw = tpv_queries_hw.unsqueeze(0).repeat(bs, 1, 1)
        tpv_queries_zh = tpv_queries_zh.unsqueeze(0).repeat(bs, 1, 1)
        tpv_queries_wz = tpv_queries_wz.unsqueeze(0).repeat(bs, 1, 1)
        tpv_query = [tpv_queries_hw, tpv_queries_zh, tpv_queries_wz]

        tpv_pos_hw = self.positional_encoding(bs, device, 'z')
        tpv_pos_zh = self.positional_encoding(bs, device, 'w')
        tpv_pos_wz = self.positional_encoding(bs, device, 'h')
        tpv_pos = [tpv_pos_hw, tpv_pos_zh, tpv_pos_wz]

        # flatten image features of different scales
        feat_flatten = []
        spatial_shapes = []
        for lvl, feat in enumerate(mlvl_feats):
            bs, num_cam, c, h, w = feat.shape
            spatial_shape = (h, w)
            feat = feat.flatten(3).permute(1, 0, 3, 2)  # num_cam, bs, hw, c
            feat = feat + self.cams_embeds[:, None, None, :].to(dtype)
            feat = feat + self.level_embeds[None, None,
                                            lvl:lvl + 1, :].to(dtype)
            spatial_shapes.append(spatial_shape)
            feat_flatten.append(feat)

        feat_flatten = torch.cat(feat_flatten, 2)  # num_cam, bs, hw++, c
        spatial_shapes = torch.as_tensor(
            spatial_shapes, dtype=torch.long, device=device)
        level_start_index = torch.cat((spatial_shapes.new_zeros(
            (1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
        feat_flatten = feat_flatten.permute(
            0, 2, 1, 3)  # (num_cam, H*W, bs, embed_dims)

        reference_points_cams, tpv_masks = [], []
        ref_3ds = [self.ref_3d_hw, self.ref_3d_zh, self.ref_3d_wz]
        for ref_3d in ref_3ds:
            reference_points_cam, tpv_mask = self.point_sampling(
                ref_3d, self.pc_range,
                batch_data_samples)  # num_cam, bs, hw++, #p, 2
            reference_points_cams.append(reference_points_cam)
            tpv_masks.append(tpv_mask)

        ref_cross_view = self.cross_view_ref_points.clone().unsqueeze(
            0).expand(bs, -1, -1, -1, -1)

        intermediate = []
        for layer in self.layers:
            output = layer(
                tpv_query,
                feat_flatten,
                feat_flatten,
                tpv_pos=tpv_pos,
                ref_2d=ref_cross_view,
                tpv_h=self.tpv_h,
                tpv_w=self.tpv_w,
                tpv_z=self.tpv_z,
                spatial_shapes=spatial_shapes,
                level_start_index=level_start_index,
                reference_points_cams=reference_points_cams,
                tpv_masks=tpv_masks)
            tpv_query = output
            if self.return_intermediate:
                intermediate.append(output)

        if self.return_intermediate:
            return torch.stack(intermediate)

        return output