indoor_loading.py 3.02 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
5
6
7
import os.path as osp

import numpy as np

from mmdet.datasets.registry import PIPELINES


8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
@PIPELINES.register_module()
class PointsColorNormalize(object):
    """Points Color Normalize

    Normalize color of the points.

    Args:
        color_mean (List[float]): Mean color of the point cloud.
    """

    def __init__(self, color_mean):
        self.color_mean = color_mean

    def __call__(self, results):
        points = results.get('results', None)
        assert points.shape[1] >= 6
        points[:, 3:6] = points[:, 3:6] - np.array(self.color_mean) / 256.0
        results['points'] = points
        return results

liyinhao's avatar
liyinhao committed
28
29
30
31
32
    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += '(color_mean={})'.format(self.color_mean)
        return repr_str

33
34

@PIPELINES.register_module()
liyinhao's avatar
liyinhao committed
35
36
class LoadPointsFromFile(object):
    """Load Points From File.
liyinhao's avatar
liyinhao committed
37

liyinhao's avatar
liyinhao committed
38
    Load sunrgbd and scannet points from file.
liyinhao's avatar
liyinhao committed
39
40
41

    Args:
        use_height (bool): Whether to use height.
liyinhao's avatar
liyinhao committed
42
43
44
45
        load_dim (int): The dimension of the loaded points.
            Default: 6.
        use_dim (List[int]): Which dimensions of the points to be used.
            Default: [0, 1, 2].
liyinhao's avatar
liyinhao committed
46
47
    """

48
    def __init__(self, use_height, load_dim=6, use_dim=[0, 1, 2]):
liyinhao's avatar
liyinhao committed
49
        self.use_height = use_height
liyinhao's avatar
liyinhao committed
50
51
52
        assert max(use_dim) < load_dim
        self.load_dim = load_dim
        self.use_dim = use_dim
liyinhao's avatar
liyinhao committed
53
54

    def __call__(self, results):
liyinhao's avatar
liyinhao committed
55
56
        pts_filename = results.get('pts_filename', None)
        assert osp.exists(pts_filename)
57
        points = np.load(pts_filename)
liyinhao's avatar
liyinhao committed
58
59
        points = points.reshape(-1, self.load_dim)
        points = points[:, self.use_dim]
liyinhao's avatar
liyinhao committed
60

liyinhao's avatar
liyinhao committed
61
        if self.use_height:
liyinhao's avatar
liyinhao committed
62
63
64
65
            floor_height = np.percentile(points[:, 2], 0.99)
            height = points[:, 2] - floor_height
            points = np.concatenate([points, np.expand_dims(height, 1)], 1)
        results['points'] = points
liyinhao's avatar
liyinhao committed
66
67
68
69
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
liyinhao's avatar
liyinhao committed
70
        repr_str += '(use_height={})'.format(self.use_height)
liyinhao's avatar
liyinhao committed
71
        repr_str += '(mean_color={})'.format(self.color_mean)
liyinhao's avatar
liyinhao committed
72
73
        repr_str += '(load_dim={})'.format(self.load_dim)
        repr_str += '(use_dim={})'.format(self.use_dim)
liyinhao's avatar
liyinhao committed
74
75
        return repr_str

liyinhao's avatar
liyinhao committed
76
77
78
79
80
81
82
83
84
85
86
87

@PIPELINES.register_module
class LoadAnnotations3D(object):
    """Load Annotations3D.

    Load sunrgbd and scannet annotations.
    """

    def __init__(self):
        pass

    def __call__(self, results):
liyinhao's avatar
liyinhao committed
88
89
        ins_labelname = results.get('ins_labelname', None)
        sem_labelname = results.get('sem_labelname', None)
liyinhao's avatar
liyinhao committed
90

liyinhao's avatar
liyinhao committed
91
        if ins_labelname is not None and sem_labelname is not None:
liyinhao's avatar
liyinhao committed
92
93
94
95
96
97
            assert osp.exists(ins_labelname)
            assert osp.exists(sem_labelname)
            pts_instance_mask = np.load(ins_labelname)
            pts_semantic_mask = np.load(sem_labelname)
            results['pts_instance_mask'] = pts_instance_mask
            results['pts_semantic_mask'] = pts_semantic_mask
liyinhao's avatar
liyinhao committed
98
99
100
101
102
103

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str