vote_head.py 24.3 KB
Newer Older
wuyuefeng's avatar
Votenet  
wuyuefeng committed
1
2
3
4
5
6
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule

zhangwenwei's avatar
zhangwenwei committed
7
from mmdet3d.core import build_bbox_coder
wuyuefeng's avatar
Votenet  
wuyuefeng committed
8
9
10
11
from mmdet3d.core.post_processing import aligned_3d_nms
from mmdet3d.models.builder import build_loss
from mmdet3d.models.losses import chamfer_distance
from mmdet3d.models.model_utils import VoteModule
wuyuefeng's avatar
wuyuefeng committed
12
from mmdet3d.ops import PointSAModule, furthest_point_sample
zhangwenwei's avatar
zhangwenwei committed
13
from mmdet.core import multi_apply
wuyuefeng's avatar
Votenet  
wuyuefeng committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from mmdet.models import HEADS


@HEADS.register_module()
class VoteHead(nn.Module):
    """Bbox head of Votenet.

    https://arxiv.org/pdf/1904.09664.pdf

    Args:
        num_classes (int): The number of class.
        bbox_coder (BaseBBoxCoder): Bbox coder for encoding and
            decoding boxes.
        train_cfg (dict): Config for training.
        test_cfg (dict): Config for testing.
        vote_moudule_cfg (dict): Config of VoteModule for point-wise votes.
        vote_aggregation_cfg (dict): Config of vote aggregation layer.
        feat_channels (tuple[int]): Convolution channels of
            prediction layer.
        conv_cfg (dict): Config of convolution in prediction layer.
        norm_cfg (dict): Config of BN in prediction layer.
        objectness_loss (dict): Config of objectness loss.
        center_loss (dict): Config of center loss.
        dir_class_loss (dict): Config of direction classification loss.
        dir_res_loss (dict): Config of direction residual regression loss.
        size_class_loss (dict): Config of size classification loss.
        size_res_loss (dict): Config of size residual regression loss.
        semantic_loss (dict): Config of point-wise semantic segmentation loss.
    """

    def __init__(self,
                 num_classes,
                 bbox_coder,
                 train_cfg=None,
                 test_cfg=None,
                 vote_moudule_cfg=None,
                 vote_aggregation_cfg=None,
                 feat_channels=(128, 128),
                 conv_cfg=dict(type='Conv1d'),
                 norm_cfg=dict(type='BN1d'),
                 objectness_loss=None,
                 center_loss=None,
                 dir_class_loss=None,
                 dir_res_loss=None,
                 size_class_loss=None,
                 size_res_loss=None,
                 semantic_loss=None):
        super(VoteHead, self).__init__()
        self.num_classes = num_classes
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.gt_per_seed = vote_moudule_cfg['gt_per_seed']
        self.num_proposal = vote_aggregation_cfg['num_point']

        self.objectness_loss = build_loss(objectness_loss)
        self.center_loss = build_loss(center_loss)
        self.dir_class_loss = build_loss(dir_class_loss)
        self.dir_res_loss = build_loss(dir_res_loss)
        self.size_class_loss = build_loss(size_class_loss)
        self.size_res_loss = build_loss(size_res_loss)
        self.semantic_loss = build_loss(semantic_loss)

        assert vote_aggregation_cfg['mlp_channels'][0] == vote_moudule_cfg[
            'in_channels']

        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.num_sizes = self.bbox_coder.num_sizes
        self.num_dir_bins = self.bbox_coder.num_dir_bins

        self.vote_module = VoteModule(**vote_moudule_cfg)
        self.vote_aggregation = PointSAModule(**vote_aggregation_cfg)

        prev_channel = vote_aggregation_cfg['mlp_channels'][-1]
        conv_pred_list = list()
        for k in range(len(feat_channels)):
            conv_pred_list.append(
                ConvModule(
                    prev_channel,
                    feat_channels[k],
                    1,
                    padding=0,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    bias=True,
                    inplace=True))
            prev_channel = feat_channels[k]
        self.conv_pred = nn.Sequential(*conv_pred_list)

        # Objectness scores (2), center residual (3),
        # heading class+residual (num_dir_bins*2),
        # size class+residual(num_sizes*4)
        conv_out_channel = (2 + 3 + self.num_dir_bins * 2 +
                            self.num_sizes * 4 + num_classes)
        self.conv_pred.add_module('conv_out',
                                  nn.Conv1d(prev_channel, conv_out_channel, 1))

    def init_weights(self):
        pass

    def forward(self, feat_dict, sample_mod):
        """Forward pass.

        The forward of VoteHead is devided into 4 steps:
            1. Generate vote_points from seed_points.
            2. Aggregate vote_points.
            3. Predict bbox and score.
            4. Decode predictions.

        Args:
            feat_dict (dict): feature dict from backbone.
            sample_mod (str): sample mode for vote aggregation layer.
                valid modes are "vote", "seed" and "random".
wuyuefeng's avatar
wuyuefeng committed
126
127
128

        Returns:
            dict: Predictions of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        """
        assert sample_mod in ['vote', 'seed', 'random']

        seed_points = feat_dict['fp_xyz'][-1]
        seed_features = feat_dict['fp_features'][-1]
        seed_indices = feat_dict['fp_indices'][-1]

        # 1. generate vote_points from seed_points
        vote_points, vote_features = self.vote_module(seed_points,
                                                      seed_features)
        results = dict(
            seed_points=seed_points,
            seed_indices=seed_indices,
            vote_points=vote_points,
            vote_features=vote_features)

        # 2. aggregate vote_points
        if sample_mod == 'vote':
            # use fps in vote_aggregation
            sample_indices = None
        elif sample_mod == 'seed':
            # FPS on seed and choose the votes corresponding to the seeds
            sample_indices = furthest_point_sample(seed_points,
                                                   self.num_proposal)
        elif sample_mod == 'random':
            # Random sampling from the votes
            batch_size, num_seed = seed_points.shape[:2]
            sample_indices = seed_points.new_tensor(
                torch.randint(0, num_seed, (batch_size, self.num_proposal)),
                dtype=torch.int32)
        else:
            raise NotImplementedError

        vote_aggregation_ret = self.vote_aggregation(vote_points,
                                                     vote_features,
                                                     sample_indices)
        aggregated_points, features, aggregated_indices = vote_aggregation_ret
        results['aggregated_points'] = aggregated_points
        results['aggregated_indices'] = aggregated_indices

        # 3. predict bbox and score
        predictions = self.conv_pred(features)

        # 4. decode predictions
        decode_res = self.bbox_coder.split_pred(predictions, aggregated_points)
        results.update(decode_res)

        return results

    def loss(self,
             bbox_preds,
             points,
             gt_bboxes_3d,
             gt_labels_3d,
             pts_semantic_mask=None,
             pts_instance_mask=None,
zhangwenwei's avatar
zhangwenwei committed
185
             img_metas=None,
wuyuefeng's avatar
Votenet  
wuyuefeng committed
186
             gt_bboxes_ignore=None):
wuyuefeng's avatar
wuyuefeng committed
187
188
189
190
        """Compute loss.

        Args:
            bbox_preds (dict): Predictions from forward of vote head.
liyinhao's avatar
liyinhao committed
191
            points (list[torch.Tensor]): Input points.
zhangwenwei's avatar
zhangwenwei committed
192
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Gt bboxes
wuyuefeng's avatar
wuyuefeng committed
193
                of each sample.
liyinhao's avatar
liyinhao committed
194
195
196
197
198
            gt_labels_3d (list[torch.Tensor]): Gt labels of each sample.
            pts_semantic_mask (None | list[torch.Tensor]): Point-wise
                semantic mask.
            pts_instance_mask (None | list[torch.Tensor]): Point-wise
                instance mask.
zhangwenwei's avatar
zhangwenwei committed
199
            img_metas (list[dict]): Contain pcd and img's meta info.
liyinhao's avatar
liyinhao committed
200
201
            gt_bboxes_ignore (None | list[torch.Tensor]): Specify
                which bounding.
wuyuefeng's avatar
wuyuefeng committed
202
203
204
205

        Returns:
            dict: Losses of Votenet.
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        targets = self.get_targets(points, gt_bboxes_3d, gt_labels_3d,
                                   pts_semantic_mask, pts_instance_mask,
                                   bbox_preds)
        (vote_targets, vote_target_masks, size_class_targets, size_res_targets,
         dir_class_targets, dir_res_targets, center_targets, mask_targets,
         valid_gt_masks, objectness_targets, objectness_weights,
         box_loss_weights, valid_gt_weights) = targets

        # calculate vote loss
        vote_loss = self.vote_module.get_loss(bbox_preds['seed_points'],
                                              bbox_preds['vote_points'],
                                              bbox_preds['seed_indices'],
                                              vote_target_masks, vote_targets)

        # calculate objectness loss
        objectness_loss = self.objectness_loss(
            bbox_preds['obj_scores'].transpose(2, 1),
            objectness_targets,
            weight=objectness_weights)

        # calculate center loss
        source2target_loss, target2source_loss = self.center_loss(
            bbox_preds['center'],
            center_targets,
            src_weight=box_loss_weights,
            dst_weight=valid_gt_weights)
        center_loss = source2target_loss + target2source_loss

        # calculate direction class loss
        dir_class_loss = self.dir_class_loss(
            bbox_preds['dir_class'].transpose(2, 1),
            dir_class_targets,
            weight=box_loss_weights)

        # calculate direction residual loss
        batch_size, proposal_num = size_class_targets.shape[:2]
        heading_label_one_hot = vote_targets.new_zeros(
            (batch_size, proposal_num, self.num_dir_bins))
        heading_label_one_hot.scatter_(2, dir_class_targets.unsqueeze(-1), 1)
        dir_res_norm = torch.sum(
            bbox_preds['dir_res_norm'] * heading_label_one_hot, -1)
        dir_res_loss = self.dir_res_loss(
            dir_res_norm, dir_res_targets, weight=box_loss_weights)

        # calculate size class loss
        size_class_loss = self.size_class_loss(
            bbox_preds['size_class'].transpose(2, 1),
            size_class_targets,
            weight=box_loss_weights)

        # calculate size residual loss
        one_hot_size_targets = vote_targets.new_zeros(
            (batch_size, proposal_num, self.num_sizes))
        one_hot_size_targets.scatter_(2, size_class_targets.unsqueeze(-1), 1)
        one_hot_size_targets_expand = one_hot_size_targets.unsqueeze(
            -1).repeat(1, 1, 1, 3)
        size_residual_norm = torch.sum(
            bbox_preds['size_res_norm'] * one_hot_size_targets_expand, 2)
        box_loss_weights_expand = box_loss_weights.unsqueeze(-1).repeat(
            1, 1, 3)
        size_res_loss = self.size_res_loss(
            size_residual_norm,
            size_res_targets,
            weight=box_loss_weights_expand)

        # calculate semantic loss
        semantic_loss = self.semantic_loss(
            bbox_preds['sem_scores'].transpose(2, 1),
            mask_targets,
            weight=box_loss_weights)

        losses = dict(
            vote_loss=vote_loss,
            objectness_loss=objectness_loss,
            semantic_loss=semantic_loss,
            center_loss=center_loss,
            dir_class_loss=dir_class_loss,
            dir_res_loss=dir_res_loss,
            size_class_loss=size_class_loss,
            size_res_loss=size_res_loss)
        return losses

    def get_targets(self,
                    points,
                    gt_bboxes_3d,
                    gt_labels_3d,
                    pts_semantic_mask=None,
                    pts_instance_mask=None,
                    bbox_preds=None):
wuyuefeng's avatar
wuyuefeng committed
295
        """Generate targets of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
296
297

        Args:
liyinhao's avatar
liyinhao committed
298
            points (list[torch.Tensor]): Points of each batch.
zhangwenwei's avatar
zhangwenwei committed
299
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): gt bboxes of
wuyuefeng's avatar
wuyuefeng committed
300
                each batch.
liyinhao's avatar
liyinhao committed
301
302
            gt_labels_3d (list[torch.Tensor]): gt class labels of each batch.
            pts_semantic_mask (None | list[torch.Tensor]): point-wise semantic
wuyuefeng's avatar
Votenet  
wuyuefeng committed
303
                label of each batch.
liyinhao's avatar
liyinhao committed
304
            pts_instance_mask (None | list[torch.Tensor]): point-wise instance
wuyuefeng's avatar
Votenet  
wuyuefeng committed
305
                label of each batch.
liyinhao's avatar
liyinhao committed
306
            bbox_preds (torch.Tensor): Bbox predictions of vote head.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
307
308
309
310
311
312
313
314
315

        Returns:
            tuple: Targets of vote head.
        """
        # find empty example
        valid_gt_masks = list()
        gt_num = list()
        for index in range(len(gt_labels_3d)):
            if len(gt_labels_3d[index]) == 0:
wuyuefeng's avatar
wuyuefeng committed
316
317
318
                fake_box = gt_bboxes_3d[index].tensor.new_zeros(
                    1, gt_bboxes_3d[index].tensor.shape[-1])
                gt_bboxes_3d[index] = gt_bboxes_3d[index].new_box(fake_box)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
                gt_labels_3d[index] = gt_labels_3d[index].new_zeros(1)
                valid_gt_masks.append(gt_labels_3d[index].new_zeros(1))
                gt_num.append(1)
            else:
                valid_gt_masks.append(gt_labels_3d[index].new_ones(
                    gt_labels_3d[index].shape))
                gt_num.append(gt_labels_3d[index].shape[0])
        max_gt_num = max(gt_num)

        if pts_semantic_mask is None:
            pts_semantic_mask = [None for i in range(len(gt_labels_3d))]
            pts_instance_mask = [None for i in range(len(gt_labels_3d))]

        aggregated_points = [
            bbox_preds['aggregated_points'][i]
            for i in range(len(gt_labels_3d))
        ]

        (vote_targets, vote_target_masks, size_class_targets, size_res_targets,
         dir_class_targets, dir_res_targets, center_targets, mask_targets,
         objectness_targets, objectness_masks) = multi_apply(
             self.get_targets_single, points, gt_bboxes_3d, gt_labels_3d,
             pts_semantic_mask, pts_instance_mask, aggregated_points)

        # pad targets as original code of votenet.
        for index in range(len(gt_labels_3d)):
            pad_num = max_gt_num - gt_labels_3d[index].shape[0]
            center_targets[index] = F.pad(center_targets[index],
                                          (0, 0, 0, pad_num))
            valid_gt_masks[index] = F.pad(valid_gt_masks[index], (0, pad_num))

        vote_targets = torch.stack(vote_targets)
        vote_target_masks = torch.stack(vote_target_masks)
        center_targets = torch.stack(center_targets)
        valid_gt_masks = torch.stack(valid_gt_masks)

        objectness_targets = torch.stack(objectness_targets)
        objectness_weights = torch.stack(objectness_masks)
        objectness_weights /= (torch.sum(objectness_weights) + 1e-6)
        box_loss_weights = objectness_targets.float() / (
            torch.sum(objectness_targets).float() + 1e-6)
        valid_gt_weights = valid_gt_masks.float() / (
            torch.sum(valid_gt_masks.float()) + 1e-6)
        dir_class_targets = torch.stack(dir_class_targets)
        dir_res_targets = torch.stack(dir_res_targets)
        size_class_targets = torch.stack(size_class_targets)
        size_res_targets = torch.stack(size_res_targets)
        mask_targets = torch.stack(mask_targets)

        return (vote_targets, vote_target_masks, size_class_targets,
                size_res_targets, dir_class_targets, dir_res_targets,
                center_targets, mask_targets, valid_gt_masks,
                objectness_targets, objectness_weights, box_loss_weights,
                valid_gt_weights)

    def get_targets_single(self,
                           points,
                           gt_bboxes_3d,
                           gt_labels_3d,
                           pts_semantic_mask=None,
                           pts_instance_mask=None,
                           aggregated_points=None):
wuyuefeng's avatar
wuyuefeng committed
381
382
383
        """Generate targets of vote head for single batch.

        Args:
liyinhao's avatar
liyinhao committed
384
            points (torch.Tensor): Points of each batch.
zhangwenwei's avatar
zhangwenwei committed
385
            gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): gt bboxes of each batch.
liyinhao's avatar
liyinhao committed
386
387
            gt_labels_3d (torch.Tensor): gt class labels of each batch.
            pts_semantic_mask (None | torch.Tensor): point-wise semantic
wuyuefeng's avatar
wuyuefeng committed
388
                label of each batch.
liyinhao's avatar
liyinhao committed
389
            pts_instance_mask (None | torch.Tensor): point-wise instance
wuyuefeng's avatar
wuyuefeng committed
390
                label of each batch.
liyinhao's avatar
liyinhao committed
391
            aggregated_points (torch.Tensor): Aggregated points from
wuyuefeng's avatar
wuyuefeng committed
392
393
394
395
396
                vote aggregation layer.

        Returns:
            tuple: Targets of vote head.
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
397
398
        assert self.bbox_coder.with_rot or pts_semantic_mask is not None

wuyuefeng's avatar
wuyuefeng committed
399
400
        gt_bboxes_3d = gt_bboxes_3d.to(points.device)

wuyuefeng's avatar
Votenet  
wuyuefeng committed
401
402
403
404
405
406
407
        # generate votes target
        num_points = points.shape[0]
        if self.bbox_coder.with_rot:
            vote_targets = points.new_zeros([num_points, 3 * self.gt_per_seed])
            vote_target_masks = points.new_zeros([num_points],
                                                 dtype=torch.long)
            vote_target_idx = points.new_zeros([num_points], dtype=torch.long)
wuyuefeng's avatar
wuyuefeng committed
408
409
            box_indices_all = gt_bboxes_3d.points_in_boxes(points)
            for i in range(gt_labels_3d.shape[0]):
wuyuefeng's avatar
Votenet  
wuyuefeng committed
410
411
412
413
414
                box_indices = box_indices_all[:, i]
                indices = torch.nonzero(box_indices).squeeze(-1)
                selected_points = points[indices]
                vote_target_masks[indices] = 1
                vote_targets_tmp = vote_targets[indices]
wuyuefeng's avatar
wuyuefeng committed
415
                votes = gt_bboxes_3d.gravity_center[i].unsqueeze(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
                    0) - selected_points[:, :3]

                for j in range(self.gt_per_seed):
                    column_indices = torch.nonzero(
                        vote_target_idx[indices] == j).squeeze(-1)
                    vote_targets_tmp[column_indices,
                                     int(j * 3):int(j * 3 +
                                                    3)] = votes[column_indices]
                    if j == 0:
                        vote_targets_tmp[column_indices] = votes[
                            column_indices].repeat(1, self.gt_per_seed)

                vote_targets[indices] = vote_targets_tmp
                vote_target_idx[indices] = torch.clamp(
                    vote_target_idx[indices] + 1, max=2)
        elif pts_semantic_mask is not None:
            vote_targets = points.new_zeros([num_points, 3])
            vote_target_masks = points.new_zeros([num_points],
                                                 dtype=torch.long)

            for i in torch.unique(pts_instance_mask):
                indices = torch.nonzero(pts_instance_mask == i).squeeze(-1)
                if pts_semantic_mask[indices[0]] < self.num_classes:
                    selected_points = points[indices, :3]
                    center = 0.5 * (
                        selected_points.min(0)[0] + selected_points.max(0)[0])
                    vote_targets[indices, :] = center - selected_points
                    vote_target_masks[indices] = 1
            vote_targets = vote_targets.repeat((1, self.gt_per_seed))
        else:
            raise NotImplementedError

        (center_targets, size_class_targets, size_res_targets,
         dir_class_targets,
         dir_res_targets) = self.bbox_coder.encode(gt_bboxes_3d, gt_labels_3d)

        proposal_num = aggregated_points.shape[0]
        distance1, _, assignment, _ = chamfer_distance(
            aggregated_points.unsqueeze(0),
            center_targets.unsqueeze(0),
            reduction='none')
        assignment = assignment.squeeze(0)
        euclidean_distance1 = torch.sqrt(distance1.squeeze(0) + 1e-6)

        objectness_targets = points.new_zeros((proposal_num), dtype=torch.long)
        objectness_targets[
            euclidean_distance1 < self.train_cfg['pos_distance_thr']] = 1

        objectness_masks = points.new_zeros((proposal_num))
        objectness_masks[
            euclidean_distance1 < self.train_cfg['pos_distance_thr']] = 1.0
        objectness_masks[
            euclidean_distance1 > self.train_cfg['neg_distance_thr']] = 1.0

        dir_class_targets = dir_class_targets[assignment]
        dir_res_targets = dir_res_targets[assignment]
        dir_res_targets /= (np.pi / self.num_dir_bins)
        size_class_targets = size_class_targets[assignment]
        size_res_targets = size_res_targets[assignment]

wuyuefeng's avatar
wuyuefeng committed
476
        one_hot_size_targets = gt_bboxes_3d.tensor.new_zeros(
wuyuefeng's avatar
Votenet  
wuyuefeng committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
            (proposal_num, self.num_sizes))
        one_hot_size_targets.scatter_(1, size_class_targets.unsqueeze(-1), 1)
        one_hot_size_targets = one_hot_size_targets.unsqueeze(-1).repeat(
            1, 1, 3)
        mean_sizes = size_res_targets.new_tensor(
            self.bbox_coder.mean_sizes).unsqueeze(0)
        pos_mean_sizes = torch.sum(one_hot_size_targets * mean_sizes, 1)
        size_res_targets /= pos_mean_sizes

        mask_targets = gt_labels_3d[assignment]

        return (vote_targets, vote_target_masks, size_class_targets,
                size_res_targets,
                dir_class_targets, dir_res_targets, center_targets,
                mask_targets.long(), objectness_targets, objectness_masks)

wuyuefeng's avatar
wuyuefeng committed
493
494
495
496
    def get_bboxes(self, points, bbox_preds, input_metas, rescale=False):
        """Generate bboxes from vote head predictions.

        Args:
liyinhao's avatar
liyinhao committed
497
            points (torch.Tensor): Input points.
wuyuefeng's avatar
wuyuefeng committed
498
499
500
501
502
            bbox_preds (dict): Predictions from vote head.
            input_metas (list[dict]): Contain pcd and img's meta info.
            rescale (bool): Whether to rescale bboxes.

        Returns:
liyinhao's avatar
liyinhao committed
503
            list[tuple[torch.Tensor]]: Contain bbox, scores and labels.
wuyuefeng's avatar
wuyuefeng committed
504
        """
wuyuefeng's avatar
Votenet  
wuyuefeng committed
505
506
507
        # decode boxes
        obj_scores = F.softmax(bbox_preds['obj_scores'], dim=-1)[..., -1]
        sem_scores = F.softmax(bbox_preds['sem_scores'], dim=-1)
wuyuefeng's avatar
wuyuefeng committed
508
        bbox3d = self.bbox_coder.decode(bbox_preds)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
509

wuyuefeng's avatar
wuyuefeng committed
510
        batch_size = bbox3d.shape[0]
wuyuefeng's avatar
Votenet  
wuyuefeng committed
511
512
513
        results = list()
        for b in range(batch_size):
            bbox_selected, score_selected, labels = self.multiclass_nms_single(
wuyuefeng's avatar
wuyuefeng committed
514
515
516
                obj_scores[b], sem_scores[b], bbox3d[b], points[b, ..., :3],
                input_metas[b])
            bbox = input_metas[b]['box_type_3d'](
wuyuefeng's avatar
wuyuefeng committed
517
518
519
520
                bbox_selected,
                box_dim=bbox_selected.shape[-1],
                with_yaw=self.bbox_coder.with_rot)
            results.append((bbox, score_selected, labels))
wuyuefeng's avatar
Votenet  
wuyuefeng committed
521
522
523

        return results

wuyuefeng's avatar
wuyuefeng committed
524
525
    def multiclass_nms_single(self, obj_scores, sem_scores, bbox, points,
                              input_meta):
wuyuefeng's avatar
wuyuefeng committed
526
527
528
        """multi-class nms in single batch.

        Args:
liyinhao's avatar
liyinhao committed
529
530
531
532
            obj_scores (torch.Tensor): Objectness score of bboxes.
            sem_scores (torch.Tensor): semantic class score of bboxes.
            bbox (torch.Tensor): Predicted bbox.
            points (torch.Tensor): Input points.
wuyuefeng's avatar
wuyuefeng committed
533
534
535
            input_meta (dict): Contain pcd and img's meta info.

        Returns:
liyinhao's avatar
liyinhao committed
536
            tuple[torch.Tensor]: Contain bbox, scores and labels.
wuyuefeng's avatar
wuyuefeng committed
537
        """
wuyuefeng's avatar
wuyuefeng committed
538
539
540
541
542
543
        bbox = input_meta['box_type_3d'](
            bbox,
            box_dim=bbox.shape[-1],
            with_yaw=self.bbox_coder.with_rot,
            origin=(0.5, 0.5, 0.5))
        box_indices = bbox.points_in_boxes(points)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
544

wuyuefeng's avatar
wuyuefeng committed
545
        corner3d = bbox.corners
wuyuefeng's avatar
Votenet  
wuyuefeng committed
546
547
548
549
        minmax_box3d = corner3d.new(torch.Size((corner3d.shape[0], 6)))
        minmax_box3d[:, :3] = torch.min(corner3d, dim=1)[0]
        minmax_box3d[:, 3:] = torch.max(corner3d, dim=1)[0]

wuyuefeng's avatar
wuyuefeng committed
550
551
552
        nonempty_box_mask = box_indices.T.sum(1) > 5

        bbox_classes = torch.argmax(sem_scores, -1)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
        nms_selected = aligned_3d_nms(minmax_box3d[nonempty_box_mask],
                                      obj_scores[nonempty_box_mask],
                                      bbox_classes[nonempty_box_mask],
                                      self.test_cfg.nms_thr)

        # filter empty boxes and boxes with low score
        scores_mask = (obj_scores > self.test_cfg.score_thr)
        nonempty_box_inds = torch.nonzero(nonempty_box_mask).flatten()
        nonempty_mask = torch.zeros_like(bbox_classes).scatter(
            0, nonempty_box_inds[nms_selected], 1)
        selected = (nonempty_mask.bool() & scores_mask.bool())

        if self.test_cfg.per_class_proposal:
            bbox_selected, score_selected, labels = [], [], []
            for k in range(sem_scores.shape[-1]):
wuyuefeng's avatar
wuyuefeng committed
568
                bbox_selected.append(bbox[selected].tensor)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
569
570
571
572
573
574
575
576
                score_selected.append(obj_scores[selected] *
                                      sem_scores[selected][:, k])
                labels.append(
                    torch.zeros_like(bbox_classes[selected]).fill_(k))
            bbox_selected = torch.cat(bbox_selected, 0)
            score_selected = torch.cat(score_selected, 0)
            labels = torch.cat(labels, 0)
        else:
wuyuefeng's avatar
wuyuefeng committed
577
            bbox_selected = bbox[selected].tensor
wuyuefeng's avatar
Votenet  
wuyuefeng committed
578
579
580
581
            score_selected = obj_scores[selected]
            labels = bbox_classes[selected]

        return bbox_selected, score_selected, labels