"tests/nn/vscode:/vscode.git/clone" did not exist on "103d33c115a5ae16d2f533989bfc5bf4acd994f1"
test_depth_points.py 12.8 KB
Newer Older
VVsssssk's avatar
VVsssssk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch

from mmdet3d.structures.points import DepthPoints


def test_depth_points():
    # test empty initialization
    empty_boxes = []
    points = DepthPoints(empty_boxes)
    assert points.tensor.shape[0] == 0
    assert points.tensor.shape[1] == 3

    # Test init with origin
    points_np = np.array([[-5.24223238e+00, 4.00209696e+01, 2.97570381e-01],
                          [-2.66751588e+01, 5.59499564e+00, -9.14345860e-01],
                          [-5.80979675e+00, 3.54092357e+01, 2.00889888e-01],
                          [-3.13086877e+01, 1.09007628e+00, -1.94612112e-01]],
                         dtype=np.float32)
    depth_points = DepthPoints(points_np, points_dim=3)
    assert depth_points.tensor.shape[0] == 4

    # Test init with color and height
    points_np = np.array([[
        -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 0.6666, 0.1956,
        0.4974, 0.9409
    ],
                          [
                              -2.66751588e+01, 5.59499564e+00, -9.14345860e-01,
                              0.1502, 0.3707, 0.1086, 0.6297
                          ],
                          [
                              -5.80979675e+00, 3.54092357e+01, 2.00889888e-01,
                              0.6565, 0.6248, 0.6954, 0.2538
                          ],
                          [
                              -3.13086877e+01, 1.09007628e+00, -1.94612112e-01,
                              0.2803, 0.0258, 0.4896, 0.3269
                          ]],
                         dtype=np.float32)
    depth_points = DepthPoints(
        points_np,
        points_dim=7,
        attribute_dims=dict(color=[3, 4, 5], height=6))
    expected_tensor = torch.tensor([[
        -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 0.6666, 0.1956,
        0.4974, 0.9409
    ],
                                    [
                                        -2.66751588e+01, 5.59499564e+00,
                                        -9.14345860e-01, 0.1502, 0.3707,
                                        0.1086, 0.6297
                                    ],
                                    [
                                        -5.80979675e+00, 3.54092357e+01,
                                        2.00889888e-01, 0.6565, 0.6248, 0.6954,
                                        0.2538
                                    ],
                                    [
                                        -3.13086877e+01, 1.09007628e+00,
                                        -1.94612112e-01, 0.2803, 0.0258,
                                        0.4896, 0.3269
                                    ]])

    assert torch.allclose(expected_tensor, depth_points.tensor)
    assert torch.allclose(expected_tensor[:, :2], depth_points.bev)
    assert torch.allclose(expected_tensor[:, :3], depth_points.coord)
    assert torch.allclose(expected_tensor[:, 3:6], depth_points.color)
    assert torch.allclose(expected_tensor[:, 6], depth_points.height)

    # test points clone
    new_depth_points = depth_points.clone()
    assert torch.allclose(new_depth_points.tensor, depth_points.tensor)

    # test points shuffle
    new_depth_points.shuffle()
    assert new_depth_points.tensor.shape == torch.Size([4, 7])

    # test points rotation
    rot_mat = torch.tensor([[0.93629336, -0.27509585, 0.21835066],
                            [0.28962948, 0.95642509, -0.03695701],
                            [-0.19866933, 0.0978434, 0.97517033]])
    depth_points.rotate(rot_mat)
    expected_tensor = torch.tensor([[
        6.6239e+00, 3.9748e+01, -2.3335e+00, 6.6660e-01, 1.9560e-01,
        4.9740e-01, 9.4090e-01
    ],
                                    [
                                        -2.3174e+01, 1.2600e+01, -6.9230e+00,
                                        1.5020e-01, 3.7070e-01, 1.0860e-01,
                                        6.2970e-01
                                    ],
                                    [
                                        4.7760e+00, 3.5484e+01, -2.3813e+00,
                                        6.5650e-01, 6.2480e-01, 6.9540e-01,
                                        2.5380e-01
                                    ],
                                    [
                                        -2.8960e+01, 9.6364e+00, -7.0663e+00,
                                        2.8030e-01, 2.5800e-02, 4.8960e-01,
                                        3.2690e-01
                                    ]])
    assert torch.allclose(expected_tensor, depth_points.tensor, 1e-3)

    new_depth_points = depth_points.clone()
    new_depth_points.rotate(0.1, axis=2)
    expected_tensor = torch.tensor([[
        2.6226e+00, 4.0211e+01, -2.3335e+00, 6.6660e-01, 1.9560e-01,
        4.9740e-01, 9.4090e-01
    ],
                                    [
                                        -2.4316e+01, 1.0224e+01, -6.9230e+00,
                                        1.5020e-01, 3.7070e-01, 1.0860e-01,
                                        6.2970e-01
                                    ],
                                    [
                                        1.2096e+00, 3.5784e+01, -2.3813e+00,
                                        6.5650e-01, 6.2480e-01, 6.9540e-01,
                                        2.5380e-01
                                    ],
                                    [
                                        -2.9777e+01, 6.6971e+00, -7.0663e+00,
                                        2.8030e-01, 2.5800e-02, 4.8960e-01,
                                        3.2690e-01
                                    ]])
    assert torch.allclose(expected_tensor, new_depth_points.tensor, 1e-3)

    # test points translation
    translation_vector = torch.tensor([0.93629336, -0.27509585, 0.21835066])
    depth_points.translate(translation_vector)
    expected_tensor = torch.tensor([[
        7.5602e+00, 3.9473e+01, -2.1152e+00, 6.6660e-01, 1.9560e-01,
        4.9740e-01, 9.4090e-01
    ],
                                    [
                                        -2.2237e+01, 1.2325e+01, -6.7046e+00,
                                        1.5020e-01, 3.7070e-01, 1.0860e-01,
                                        6.2970e-01
                                    ],
                                    [
                                        5.7123e+00, 3.5209e+01, -2.1629e+00,
                                        6.5650e-01, 6.2480e-01, 6.9540e-01,
                                        2.5380e-01
                                    ],
                                    [
                                        -2.8023e+01, 9.3613e+00, -6.8480e+00,
                                        2.8030e-01, 2.5800e-02, 4.8960e-01,
                                        3.2690e-01
                                    ]])
    assert torch.allclose(expected_tensor, depth_points.tensor, 1e-4)

    # test points filter
    point_range = [-10, -40, -10, 10, 40, 10]
    in_range_flags = depth_points.in_range_3d(point_range)
    expected_flags = torch.tensor([True, False, True, False])
    assert torch.all(in_range_flags == expected_flags)

    # test points scale
    depth_points.scale(1.2)
    expected_tensor = torch.tensor([[
        9.0722e+00, 4.7368e+01, -2.5382e+00, 6.6660e-01, 1.9560e-01,
        4.9740e-01, 9.4090e-01
    ],
                                    [
                                        -2.6685e+01, 1.4790e+01, -8.0455e+00,
                                        1.5020e-01, 3.7070e-01, 1.0860e-01,
                                        6.2970e-01
                                    ],
                                    [
                                        6.8547e+00, 4.2251e+01, -2.5955e+00,
                                        6.5650e-01, 6.2480e-01, 6.9540e-01,
                                        2.5380e-01
                                    ],
                                    [
                                        -3.3628e+01, 1.1234e+01, -8.2176e+00,
                                        2.8030e-01, 2.5800e-02, 4.8960e-01,
                                        3.2690e-01
                                    ]])
    assert torch.allclose(expected_tensor, depth_points.tensor, 1e-3)

    # test get_item
    expected_tensor = torch.tensor(
        [[-26.6848, 14.7898, -8.0455, 0.1502, 0.3707, 0.1086, 0.6297]])
    assert torch.allclose(expected_tensor, depth_points[1].tensor, 1e-4)
    expected_tensor = torch.tensor(
        [[-26.6848, 14.7898, -8.0455, 0.1502, 0.3707, 0.1086, 0.6297],
         [6.8547, 42.2509, -2.5955, 0.6565, 0.6248, 0.6954, 0.2538]])
    assert torch.allclose(expected_tensor, depth_points[1:3].tensor, 1e-4)
    mask = torch.tensor([True, False, True, False])
    expected_tensor = torch.tensor(
        [[9.0722, 47.3678, -2.5382, 0.6666, 0.1956, 0.4974, 0.9409],
         [6.8547, 42.2509, -2.5955, 0.6565, 0.6248, 0.6954, 0.2538]])
    assert torch.allclose(expected_tensor, depth_points[mask].tensor, 1e-4)
    expected_tensor = torch.tensor([[0.6666], [0.1502], [0.6565], [0.2803]])
    assert torch.allclose(expected_tensor, depth_points[:, 3].tensor, 1e-4)

    # test length
    assert len(depth_points) == 4

    # test repr
    expected_repr = 'DepthPoints(\n    '\
        'tensor([[ 9.0722e+00,  4.7368e+01, -2.5382e+00,  '\
        '6.6660e-01,  1.9560e-01,\n          4.9740e-01,  '\
        '9.4090e-01],\n        '\
        '[-2.6685e+01,  1.4790e+01, -8.0455e+00,  1.5020e-01,  '\
        '3.7070e-01,\n          '\
        '1.0860e-01,  6.2970e-01],\n        '\
        '[ 6.8547e+00,  4.2251e+01, -2.5955e+00,  6.5650e-01,  '\
        '6.2480e-01,\n          '\
        '6.9540e-01,  2.5380e-01],\n        '\
        '[-3.3628e+01,  1.1234e+01, -8.2176e+00,  2.8030e-01,  '\
        '2.5800e-02,\n          '\
        '4.8960e-01,  3.2690e-01]]))'
    assert expected_repr == str(depth_points)

    # test concatenate
    depth_points_clone = depth_points.clone()
    cat_points = DepthPoints.cat([depth_points, depth_points_clone])
    assert torch.allclose(cat_points.tensor[:len(depth_points)],
                          depth_points.tensor)

    # test iteration
    for i, point in enumerate(depth_points):
        assert torch.allclose(point, depth_points.tensor[i])

    # test new_point
    new_points = depth_points.new_point([[1, 2, 3, 4, 5, 6, 7]])
    assert torch.allclose(
        new_points.tensor,
        torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=depth_points.tensor.dtype))

    # test in_range_bev
    point_bev_range = [-30, -40, 30, 40]
    in_range_flags = depth_points.in_range_bev(point_bev_range)
    expected_flags = torch.tensor([False, True, False, False])
    assert torch.all(in_range_flags == expected_flags)

    # test flip
    depth_points.flip(bev_direction='horizontal')
    expected_tensor = torch.tensor([[
        -9.0722e+00, 4.7368e+01, -2.5382e+00, 6.6660e-01, 1.9560e-01,
        4.9740e-01, 9.4090e-01
    ],
                                    [
                                        2.6685e+01, 1.4790e+01, -8.0455e+00,
                                        1.5020e-01, 3.7070e-01, 1.0860e-01,
                                        6.2970e-01
                                    ],
                                    [
                                        -6.8547e+00, 4.2251e+01, -2.5955e+00,
                                        6.5650e-01, 6.2480e-01, 6.9540e-01,
                                        2.5380e-01
                                    ],
                                    [
                                        3.3628e+01, 1.1234e+01, -8.2176e+00,
                                        2.8030e-01, 2.5800e-02, 4.8960e-01,
                                        3.2690e-01
                                    ]])
    assert torch.allclose(expected_tensor, depth_points.tensor, 1e-4)

    depth_points.flip(bev_direction='vertical')
    expected_tensor = torch.tensor([[
        -9.0722e+00, -4.7368e+01, -2.5382e+00, 6.6660e-01, 1.9560e-01,
        4.9740e-01, 9.4090e-01
    ],
                                    [
                                        2.6685e+01, -1.4790e+01, -8.0455e+00,
                                        1.5020e-01, 3.7070e-01, 1.0860e-01,
                                        6.2970e-01
                                    ],
                                    [
                                        -6.8547e+00, -4.2251e+01, -2.5955e+00,
                                        6.5650e-01, 6.2480e-01, 6.9540e-01,
                                        2.5380e-01
                                    ],
                                    [
                                        3.3628e+01, -1.1234e+01, -8.2176e+00,
                                        2.8030e-01, 2.5800e-02, 4.8960e-01,
                                        3.2690e-01
                                    ]])
    assert torch.allclose(expected_tensor, depth_points.tensor, 1e-4)