transforms_3d.py 6.25 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# modify from https://github.com/mit-han-lab/bevfusion
from typing import Any, Dict

import numpy as np
import torch
from mmcv.transforms import BaseTransform
from PIL import Image

from mmdet3d.registry import TRANSFORMS


@TRANSFORMS.register_module()
class ImageAug3D(BaseTransform):

    def __init__(self, final_dim, resize_lim, bot_pct_lim, rot_lim, rand_flip,
                 is_train):
        self.final_dim = final_dim
        self.resize_lim = resize_lim
        self.bot_pct_lim = bot_pct_lim
        self.rand_flip = rand_flip
        self.rot_lim = rot_lim
        self.is_train = is_train

    def sample_augmentation(self, results):
        H, W = results['ori_shape']
        fH, fW = self.final_dim
        if self.is_train:
            resize = np.random.uniform(*self.resize_lim)
            resize_dims = (int(W * resize), int(H * resize))
            newW, newH = resize_dims
            crop_h = int(
                (1 - np.random.uniform(*self.bot_pct_lim)) * newH) - fH
            crop_w = int(np.random.uniform(0, max(0, newW - fW)))
            crop = (crop_w, crop_h, crop_w + fW, crop_h + fH)
            flip = False
            if self.rand_flip and np.random.choice([0, 1]):
                flip = True
            rotate = np.random.uniform(*self.rot_lim)
        else:
            resize = np.mean(self.resize_lim)
            resize_dims = (int(W * resize), int(H * resize))
            newW, newH = resize_dims
            crop_h = int((1 - np.mean(self.bot_pct_lim)) * newH) - fH
            crop_w = int(max(0, newW - fW) / 2)
            crop = (crop_w, crop_h, crop_w + fW, crop_h + fH)
            flip = False
            rotate = 0
        return resize, resize_dims, crop, flip, rotate

    def img_transform(self, img, rotation, translation, resize, resize_dims,
                      crop, flip, rotate):
        # adjust image
        img = Image.fromarray(img.astype('uint8'), mode='RGB')
        img = img.resize(resize_dims)
        img = img.crop(crop)
        if flip:
            img = img.transpose(method=Image.FLIP_LEFT_RIGHT)
        img = img.rotate(rotate)

        # post-homography transformation
        rotation *= resize
        translation -= torch.Tensor(crop[:2])
        if flip:
            A = torch.Tensor([[-1, 0], [0, 1]])
            b = torch.Tensor([crop[2] - crop[0], 0])
            rotation = A.matmul(rotation)
            translation = A.matmul(translation) + b
        theta = rotate / 180 * np.pi
        A = torch.Tensor([
            [np.cos(theta), np.sin(theta)],
            [-np.sin(theta), np.cos(theta)],
        ])
        b = torch.Tensor([crop[2] - crop[0], crop[3] - crop[1]]) / 2
        b = A.matmul(-b) + b
        rotation = A.matmul(rotation)
        translation = A.matmul(translation) + b

        return img, rotation, translation

    def transform(self, data: Dict[str, Any]) -> Dict[str, Any]:
        imgs = data['img']
        new_imgs = []
        transforms = []
        for img in imgs:
            resize, resize_dims, crop, flip, rotate = self.sample_augmentation(
                data)
            post_rot = torch.eye(2)
            post_tran = torch.zeros(2)
            new_img, rotation, translation = self.img_transform(
                img,
                post_rot,
                post_tran,
                resize=resize,
                resize_dims=resize_dims,
                crop=crop,
                flip=flip,
                rotate=rotate,
            )
            transform = torch.eye(4)
            transform[:2, :2] = rotation
            transform[:2, 3] = translation
            new_imgs.append(np.array(new_img).astype(np.float32))
            transforms.append(transform.numpy())
        data['img'] = new_imgs
        # update the calibration matrices
        data['img_aug_matrix'] = transforms
        return data


@TRANSFORMS.register_module()
class GridMask(BaseTransform):

    def __init__(
        self,
        use_h,
        use_w,
        max_epoch,
        rotate=1,
        offset=False,
        ratio=0.5,
        mode=0,
        prob=1.0,
        fixed_prob=False,
    ):
        self.use_h = use_h
        self.use_w = use_w
        self.rotate = rotate
        self.offset = offset
        self.ratio = ratio
        self.mode = mode
        self.st_prob = prob
        self.prob = prob
        self.epoch = None
        self.max_epoch = max_epoch
        self.fixed_prob = fixed_prob

    def set_epoch(self, epoch):
        self.epoch = epoch
        if not self.fixed_prob:
            self.set_prob(self.epoch, self.max_epoch)

    def set_prob(self, epoch, max_epoch):
        self.prob = self.st_prob * self.epoch / self.max_epoch

    def transform(self, results):
        if np.random.rand() > self.prob:
            return results
        imgs = results['img']
        h = imgs[0].shape[0]
        w = imgs[0].shape[1]
        self.d1 = 2
        self.d2 = min(h, w)
        hh = int(1.5 * h)
        ww = int(1.5 * w)
        d = np.random.randint(self.d1, self.d2)
        if self.ratio == 1:
            self.length = np.random.randint(1, d)
        else:
            self.length = min(max(int(d * self.ratio + 0.5), 1), d - 1)
        mask = np.ones((hh, ww), np.float32)
        st_h = np.random.randint(d)
        st_w = np.random.randint(d)
        if self.use_h:
            for i in range(hh // d):
                s = d * i + st_h
                t = min(s + self.length, hh)
                mask[s:t, :] *= 0
        if self.use_w:
            for i in range(ww // d):
                s = d * i + st_w
                t = min(s + self.length, ww)
                mask[:, s:t] *= 0

        r = np.random.randint(self.rotate)
        mask = Image.fromarray(np.uint8(mask))
        mask = mask.rotate(r)
        mask = np.asarray(mask)
        mask = mask[(hh - h) // 2:(hh - h) // 2 + h,
                    (ww - w) // 2:(ww - w) // 2 + w]

        mask = mask.astype(np.float32)
        mask = mask[:, :, None]
        if self.mode == 1:
            mask = 1 - mask

        # mask = mask.expand_as(imgs[0])
        if self.offset:
            offset = torch.from_numpy(2 * (np.random.rand(h, w) - 0.5)).float()
            offset = (1 - mask) * offset
            imgs = [x * mask + offset for x in imgs]
        else:
            imgs = [x * mask for x in imgs]

        results.update(img=imgs)
        return results