bevfusion.py 8.23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from typing import Dict, List, Optional

import numpy as np
import torch
from torch import Tensor
from torch.nn import functional as F

from mmdet3d.models import Base3DDetector
from mmdet3d.registry import MODELS
from mmdet3d.structures import Det3DDataSample
from mmdet3d.utils import OptConfigType, OptMultiConfig, OptSampleList
from .ops import Voxelization


@MODELS.register_module()
class BEVFusion(Base3DDetector):

    def __init__(
        self,
        data_preprocessor: OptConfigType = None,
        pts_voxel_encoder: Optional[dict] = None,
        pts_middle_encoder: Optional[dict] = None,
        fusion_layer: Optional[dict] = None,
        img_backbone: Optional[dict] = None,
        pts_backbone: Optional[dict] = None,
        vtransform: Optional[dict] = None,
        img_neck: Optional[dict] = None,
        pts_neck: Optional[dict] = None,
        bbox_head: Optional[dict] = None,
        init_cfg: OptMultiConfig = None,
        seg_head: Optional[dict] = None,
        **kwargs,
    ) -> None:
        voxelize_cfg = data_preprocessor.pop('voxelize_cfg')
        super().__init__(
            data_preprocessor=data_preprocessor, init_cfg=init_cfg)

        self.voxelize_reduce = voxelize_cfg.pop('voxelize_reduce')
        self.pts_voxel_layer = Voxelization(**voxelize_cfg)

        self.pts_voxel_encoder = MODELS.build(pts_voxel_encoder)

        self.img_backbone = MODELS.build(img_backbone)
        self.img_neck = MODELS.build(img_neck)
        self.vtransform = MODELS.build(vtransform)
        self.pts_middle_encoder = MODELS.build(pts_middle_encoder)

        self.fusion_layer = MODELS.build(fusion_layer)

        self.pts_backbone = MODELS.build(pts_backbone)
        self.pts_neck = MODELS.build(pts_neck)

        self.bbox_head = MODELS.build(bbox_head)
        # hard code here where using converted checkpoint of original
        # implementation of `BEVFusion`
        self.use_converted_checkpoint = True

        self.init_weights()

    def _forward(self,
                 batch_inputs: Tensor,
                 batch_data_samples: OptSampleList = None):
        """Network forward process.

        Usually includes backbone, neck and head forward without any post-
        processing.
        """
        pass

    def init_weights(self) -> None:
        if self.img_backbone is not None:
            self.img_backbone.init_weights()

    @property
    def with_bbox_head(self):
        """bool: Whether the detector has a box head."""
        return hasattr(self, 'bbox_head') and self.bbox_head is not None

    @property
    def with_seg_head(self):
        """bool: Whether the detector has a segmentation head.
        """
        return hasattr(self, 'seg_head') and self.seg_head is not None

    def extract_img_feat(
        self,
        x,
        points,
        lidar2image,
        camera_intrinsics,
        camera2lidar,
        img_aug_matrix,
        lidar_aug_matrix,
        img_metas,
    ) -> torch.Tensor:
        B, N, C, H, W = x.size()
        x = x.view(B * N, C, H, W)

        x = self.img_backbone(x)
        x = self.img_neck(x)

        if not isinstance(x, torch.Tensor):
            x = x[0]

        BN, C, H, W = x.size()
        x = x.view(B, int(BN / B), C, H, W)

        x = self.vtransform(
            x,
            points,
            lidar2image,
            camera_intrinsics,
            camera2lidar,
            img_aug_matrix,
            lidar_aug_matrix,
            img_metas,
        )
        return x

    def extract_pts_feat(self, batch_inputs_dict) -> torch.Tensor:
        points = batch_inputs_dict['points']
        feats, coords, sizes = self.voxelize(points)
        batch_size = coords[-1, 0] + 1
        x = self.pts_middle_encoder(feats, coords, batch_size)
        return x

    @torch.no_grad()
    def voxelize(self, points):
        feats, coords, sizes = [], [], []
        for k, res in enumerate(points):
            ret = self.pts_voxel_layer(res)
            if len(ret) == 3:
                # hard voxelize
                f, c, n = ret
            else:
                assert len(ret) == 2
                f, c = ret
                n = None
            feats.append(f)
            coords.append(F.pad(c, (1, 0), mode='constant', value=k))
            if n is not None:
                sizes.append(n)

        feats = torch.cat(feats, dim=0)
        coords = torch.cat(coords, dim=0)
        if len(sizes) > 0:
            sizes = torch.cat(sizes, dim=0)
            if self.voxelize_reduce:
                feats = feats.sum(
                    dim=1, keepdim=False) / sizes.type_as(feats).view(-1, 1)
                feats = feats.contiguous()

        return feats, coords, sizes

    def predict(self, batch_inputs_dict: Dict[str, Optional[Tensor]],
                batch_data_samples: List[Det3DDataSample],
                **kwargs) -> List[Det3DDataSample]:
        """Forward of testing.

        Args:
            batch_inputs_dict (dict): The model input dict which include
                'points' keys.

                - points (list[torch.Tensor]): Point cloud of each sample.
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance_3d`.

        Returns:
            list[:obj:`Det3DDataSample`]: Detection results of the
            input sample. Each Det3DDataSample usually contain
            'pred_instances_3d'. And the ``pred_instances_3d`` usually
            contains following keys.

            - scores_3d (Tensor): Classification scores, has a shape
                (num_instances, )
            - labels_3d (Tensor): Labels of bboxes, has a shape
                (num_instances, ).
            - bbox_3d (:obj:`BaseInstance3DBoxes`): Prediction of bboxes,
                contains a tensor with shape (num_instances, 7).
        """
        batch_input_metas = [item.metainfo for item in batch_data_samples]
        feats = self.extract_feat(batch_inputs_dict, batch_input_metas)

        if self.with_bbox_head:
            outputs = self.bbox_head.predict(feats, batch_input_metas)
            if self.use_converted_checkpoint:
                outputs[0]['bboxes_3d'].tensor[:, 6] = -outputs[0][
                    'bboxes_3d'].tensor[:, 6] - np.pi / 2
                outputs[0]['bboxes_3d'].tensor[:, 3:5] = outputs[0][
                    'bboxes_3d'].tensor[:, [4, 3]]

        res = self.add_pred_to_datasample(batch_data_samples, outputs)

        return res

    def extract_feat(
        self,
        batch_inputs_dict,
        batch_input_metas,
        **kwargs,
    ):
        imgs = batch_inputs_dict.get('imgs', None)
        points = batch_inputs_dict.get('points', None)

        lidar2image, camera_intrinsics, camera2lidar = [], [], []
        img_aug_matrix, lidar_aug_matrix = [], []
        for i, meta in enumerate(batch_input_metas):
            lidar2image.append(meta['lidar2img'])
            camera_intrinsics.append(meta['cam2img'])
            camera2lidar.append(meta['cam2lidar'])
            img_aug_matrix.append(meta.get('img_aug_matrix', np.eye(4)))
            lidar_aug_matrix.append(meta.get('lidar_aug_matrix', np.eye(4)))

        lidar2image = imgs.new_tensor(np.asarray(lidar2image))
        camera_intrinsics = imgs.new_tensor(np.array(camera_intrinsics))
        camera2lidar = imgs.new_tensor(np.asarray(camera2lidar))
        img_aug_matrix = imgs.new_tensor(np.asarray(img_aug_matrix))
        lidar_aug_matrix = imgs.new_tensor(np.asarray(lidar_aug_matrix))
        img_feature = self.extract_img_feat(imgs, points, lidar2image,
                                            camera_intrinsics, camera2lidar,
                                            img_aug_matrix, lidar_aug_matrix,
                                            batch_input_metas)
        pts_feature = self.extract_pts_feat(batch_inputs_dict)

        features = [img_feature, pts_feature]

        if self.fusion_layer is not None:
            x = self.fusion_layer(features)
        else:
            assert len(features) == 1, features
            x = features[0]

        x = self.pts_backbone(x)
        x = self.pts_neck(x)

        return x

    def loss(self, batch_inputs_dict: Dict[str, Optional[Tensor]],
             batch_data_samples: List[Det3DDataSample],
             **kwargs) -> List[Det3DDataSample]:
        pass