panoptic_seg_eval.py 15.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Tuple

import numpy as np
from mmengine.logging import MMLogger, print_log

PQReturnsType = Tuple[np.double, np.double, np.ndarray, np.ndarray, np.ndarray]


class EvalPanoptic:
    r"""Evaluate panoptic results for Semantickitti and NuScenes.
    Please refer to the `semantic kitti api
    <https://github.com/PRBonn/semantic-kitti-api/>`_ for more details

    Args:
        classes (list): Classes used in the dataset.
        thing_classes (list): Thing classes used in the dataset.
        stuff_classes (list): Stuff classes used in the dataset.
        min_num_points (int): Minimum number of points of an object to be
            counted as ground truth in evaluation.
        id_offset (int): Offset for instance ids to concat with
            semantic labels.
        label2cat (dict[str]): Mapping from label to category.
        ignore_index (list[int]): Indices of ignored classes in evaluation.
        logger (logging.Logger | str, optional): Logger used for printing.
            Defaults to None.
    """

    def __init__(self,
                 classes: List[str],
                 thing_classes: List[str],
                 stuff_classes: List[str],
                 min_num_points: int,
                 id_offset: int,
                 label2cat: Dict[str, str],
                 ignore_index: List[str],
                 logger: MMLogger = None):
        self.classes = classes
        self.thing_classes = thing_classes
        self.stuff_classes = stuff_classes
        self.ignore_index = np.array(ignore_index, dtype=int)
        self.num_classes = len(classes)
        self.label2cat = label2cat
        self.logger = logger
        self.include = np.array(
            [n for n in range(self.num_classes) if n not in self.ignore_index],
            dtype=int)
        self.id_offset = id_offset
        self.eps = 1e-15
        self.min_num_points = min_num_points
        self.reset()

    def reset(self):
        """Reset class variables."""
        # general things
        # iou stuff
        self.confusion_matrix = np.zeros((self.num_classes, self.num_classes),
                                         dtype=int)
        # panoptic stuff
        self.pan_tp = np.zeros(self.num_classes, dtype=int)
        self.pan_iou = np.zeros(self.num_classes, dtype=np.double)
        self.pan_fp = np.zeros(self.num_classes, dtype=int)
        self.pan_fn = np.zeros(self.num_classes, dtype=int)

        self.evaluated_fnames = []

    def evaluate(self, gt_labels: List[Dict[str, np.ndarray]],
                 seg_preds: List[Dict[str, np.ndarray]]) -> Dict[str, float]:
        """Evaluate the predictions.

        Args:
            gt_labels (list[dict[np.ndarray]]): Ground Truth.
            seg_preds (list[dict[np.ndarray]]): Predictions.

        Returns:
            dict[float]: The computed metrics. The keys are the names of
            the metrics, and the values are corresponding results.
        """
        assert len(seg_preds) == len(gt_labels)
        for f in range(len(seg_preds)):
            gt_semantic_seg = gt_labels[f]['pts_semantic_mask'].astype(int)
            gt_instance_seg = gt_labels[f]['pts_instance_mask'].astype(int)
            pred_semantic_seg = seg_preds[f]['pts_semantic_mask'].astype(int)
            pred_instance_seg = seg_preds[f]['pts_instance_mask'].astype(int)

            self.add_semantic_sample(pred_semantic_seg, gt_semantic_seg)
            self.add_panoptic_sample(pred_semantic_seg, gt_semantic_seg,
                                     pred_instance_seg, gt_instance_seg)

        result_dicts = self.print_results()

        return result_dicts

    def print_results(self) -> Dict[str, float]:
        """Print results.

        Returns:
            dict[float]: The computed metrics. The keys are the names of
            the metrics, and the values are corresponding results.
        """
        pq, sq, rq, all_pq, all_sq, all_rq = self.get_pq()
        miou, iou = self.get_iou()

        # now make a nice dictionary
        output_dict = {}

        # make python variables
        pq = pq.item()
        sq = sq.item()
        rq = rq.item()
        all_pq = all_pq.flatten().tolist()
        all_sq = all_sq.flatten().tolist()
        all_rq = all_rq.flatten().tolist()
        miou = miou.item()
        iou = iou.flatten().tolist()

        output_dict['all'] = {}
        output_dict['all']['pq'] = pq
        output_dict['all']['sq'] = sq
        output_dict['all']['rq'] = rq
        output_dict['all']['miou'] = miou
        for idx, (_pq, _sq, _rq,
                  _iou) in enumerate(zip(all_pq, all_sq, all_rq, iou)):
            class_str = self.classes[idx]
            output_dict[class_str] = {}
            output_dict[class_str]['pq'] = _pq
            output_dict[class_str]['sq'] = _sq
            output_dict[class_str]['rq'] = _rq
            output_dict[class_str]['miou'] = _iou

        pq_dagger = np.mean(
            [float(output_dict[c]['pq']) for c in self.thing_classes] +
            [float(output_dict[c]['miou']) for c in self.stuff_classes])

        pq_things = np.mean(
            [float(output_dict[c]['pq']) for c in self.thing_classes])
        rq_things = np.mean(
            [float(output_dict[c]['rq']) for c in self.thing_classes])
        sq_things = np.mean(
            [float(output_dict[c]['sq']) for c in self.thing_classes])

        pq_stuff = np.mean(
            [float(output_dict[c]['pq']) for c in self.stuff_classes])
        rq_stuff = np.mean(
            [float(output_dict[c]['rq']) for c in self.stuff_classes])
        sq_stuff = np.mean(
            [float(output_dict[c]['sq']) for c in self.stuff_classes])

        result_dicts = {}
        result_dicts['pq'] = float(pq)
        result_dicts['pq_dagger'] = float(pq_dagger)
        result_dicts['sq_mean'] = float(sq)
        result_dicts['rq_mean'] = float(rq)
        result_dicts['miou'] = float(miou)
        result_dicts['pq_stuff'] = float(pq_stuff)
        result_dicts['rq_stuff'] = float(rq_stuff)
        result_dicts['sq_stuff'] = float(sq_stuff)
        result_dicts['pq_things'] = float(pq_things)
        result_dicts['rq_things'] = float(rq_things)
        result_dicts['sq_things'] = float(sq_things)

        if self.logger is not None:
            print_log('|        |   IoU   |   PQ   |   RQ   |  SQ   |',
                      self.logger)
            for k, v in output_dict.items():
                print_log(
                    '|{}| {:.4f} | {:.4f} | {:.4f} | {:.4f} |'.format(
                        k.ljust(8)[-8:], v['miou'], v['pq'], v['rq'], v['sq']),
                    self.logger)
            print_log('True Positive: ', self.logger)
            print_log('\t|\t'.join([str(x) for x in self.pan_tp]), self.logger)
            print_log('False Positive: ')
            print_log('\t|\t'.join([str(x) for x in self.pan_fp]), self.logger)
            print_log('False Negative: ')
            print_log('\t|\t'.join([str(x) for x in self.pan_fn]), self.logger)

        else:
            print('|        |   IoU   |   PQ   |   RQ   |  SQ   |')
            for k, v in output_dict.items():
                print('|{}| {:.4f} | {:.4f} | {:.4f} | {:.4f} |'.format(
                    k.ljust(8)[-8:], v['miou'], v['pq'], v['rq'], v['sq']))
            print('True Positive: ')
            print('\t|\t'.join([str(x) for x in self.pan_tp]))
            print('False Positive: ')
            print('\t|\t'.join([str(x) for x in self.pan_fp]))
            print('False Negative: ')
            print('\t|\t'.join([str(x) for x in self.pan_fn]))

        return result_dicts

    def get_pq(self) -> PQReturnsType:
        """Get results of PQ metric.

        Returns:
            tuple(np.ndarray): PQ, SQ, RQ of each class and all class.
        """
        # get PQ and first calculate for all classes
        sq_all = self.pan_iou.astype(np.double) / np.maximum(
            self.pan_tp.astype(np.double), self.eps)
        rq_all = self.pan_tp.astype(np.double) / np.maximum(
            self.pan_tp.astype(np.double) + 0.5 * self.pan_fp.astype(np.double)
            + 0.5 * self.pan_fn.astype(np.double), self.eps)
        pq_all = sq_all * rq_all

        # then do the REAL mean (no ignored classes)
        sq = sq_all[self.include].mean()
        rq = rq_all[self.include].mean()
        pq = pq_all[self.include].mean()

        return (pq, sq, rq, pq_all, sq_all, rq_all)

    def get_iou(self) -> Tuple[np.double, np.ndarray]:
        """Get results of IOU metric.

        Returns:
            tuple(np.ndarray): iou of all class and each class.
        """
        tp, fp, fn = self.get_iou_stats()
        intersection = tp
        union = tp + fp + fn
        union = np.maximum(union, self.eps)
        iou = intersection.astype(np.double) / union.astype(np.double)
        iou_mean = (intersection[self.include].astype(np.double) /
                    union[self.include].astype(np.double)).mean()

        return iou_mean, iou

    def get_iou_stats(self) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
        """Get IOU statistics of TP, FP and FN.

        Returns:
            tuple(np.ndarray): TP, FP, FN of all class.
        """
        # copy to avoid modifying the real deal
        conf = self.confusion_matrix.copy().astype(np.double)
        # remove fp from confusion on the ignore classes predictions
        # points that were predicted of another class, but were ignore
        # (corresponds to zeroing the cols of those classes,
        # since the predictions go on the rows)
        conf[:, self.ignore_index] = 0

        # get the clean stats
        tp = conf.diagonal()
        fp = conf.sum(axis=1) - tp
        fn = conf.sum(axis=0) - tp
        return tp, fp, fn

    def add_semantic_sample(self, semantic_preds: np.ndarray,
                            gt_semantics: np.ndarray):
        """Add one batch of semantic predictions and ground truths.

        Args:
            semantic_preds (np.ndarray): Semantic predictions.
            gt_semantics (np.ndarray): Semantic ground truths.
        """
        idxs = np.stack([semantic_preds, gt_semantics], axis=0)
        # make confusion matrix (cols = gt, rows = pred)
        np.add.at(self.confusion_matrix, tuple(idxs), 1)

    def add_panoptic_sample(self, semantic_preds: np.ndarray,
                            gt_semantics: np.ndarray,
                            instance_preds: np.ndarray,
                            gt_instances: np.ndarray):
        """Add one sample of panoptic predictions and ground truths for
        evaluation.

        Args:
            semantic_preds (np.ndarray): Semantic predictions.
            gt_semantics (np.ndarray): Semantic ground truths.
            instance_preds (np.ndarray): Instance predictions.
            gt_instances (np.ndarray): Instance ground truths.
        """
        # avoid zero (ignored label)
        instance_preds = instance_preds + 1
        gt_instances = gt_instances + 1

        # only interested in points that are
        # outside the void area (not in excluded classes)
        for cl in self.ignore_index:
            # make a mask for this class
            gt_not_in_excl_mask = gt_semantics != cl
            # remove all other points
            semantic_preds = semantic_preds[gt_not_in_excl_mask]
            gt_semantics = gt_semantics[gt_not_in_excl_mask]
            instance_preds = instance_preds[gt_not_in_excl_mask]
            gt_instances = gt_instances[gt_not_in_excl_mask]

        # first step is to count intersections > 0.5 IoU
        # for each class (except the ignored ones)
        for cl in self.include:
            # get a class mask
            pred_inst_in_cl_mask = semantic_preds == cl
            gt_inst_in_cl_mask = gt_semantics == cl

            # get instance points in class (makes outside stuff 0)
            pred_inst_in_cl = instance_preds * pred_inst_in_cl_mask.astype(int)
            gt_inst_in_cl = gt_instances * gt_inst_in_cl_mask.astype(int)

            # generate the areas for each unique instance prediction
            unique_pred, counts_pred = np.unique(
                pred_inst_in_cl[pred_inst_in_cl > 0], return_counts=True)
            id2idx_pred = {id: idx for idx, id in enumerate(unique_pred)}
            matched_pred = np.array([False] * unique_pred.shape[0])

            # generate the areas for each unique instance gt_np
            unique_gt, counts_gt = np.unique(
                gt_inst_in_cl[gt_inst_in_cl > 0], return_counts=True)
            id2idx_gt = {id: idx for idx, id in enumerate(unique_gt)}
            matched_gt = np.array([False] * unique_gt.shape[0])

            # generate intersection using offset
            valid_combos = np.logical_and(pred_inst_in_cl > 0,
                                          gt_inst_in_cl > 0)
            id_offset_combo = pred_inst_in_cl[
                valid_combos] + self.id_offset * gt_inst_in_cl[valid_combos]
            unique_combo, counts_combo = np.unique(
                id_offset_combo, return_counts=True)

            # generate an intersection map
            # count the intersections with over 0.5 IoU as TP
            gt_labels = unique_combo // self.id_offset
            pred_labels = unique_combo % self.id_offset
            gt_areas = np.array([counts_gt[id2idx_gt[id]] for id in gt_labels])
            pred_areas = np.array(
                [counts_pred[id2idx_pred[id]] for id in pred_labels])
            intersections = counts_combo
            unions = gt_areas + pred_areas - intersections
            ious = intersections.astype(float) / unions.astype(float)

            tp_indexes = ious > 0.5
            self.pan_tp[cl] += np.sum(tp_indexes)
            self.pan_iou[cl] += np.sum(ious[tp_indexes])

            matched_gt[[id2idx_gt[id] for id in gt_labels[tp_indexes]]] = True
            matched_pred[[id2idx_pred[id]
                          for id in pred_labels[tp_indexes]]] = True

            # count the FN
            if len(counts_gt) > 0:
                self.pan_fn[cl] += np.sum(
                    np.logical_and(counts_gt >= self.min_num_points,
                                   ~matched_gt))

            # count the FP
            if len(matched_pred) > 0:
                self.pan_fp[cl] += np.sum(
                    np.logical_and(counts_pred >= self.min_num_points,
                                   ~matched_pred))


def panoptic_seg_eval(gt_labels: List[np.ndarray],
                      seg_preds: List[np.ndarray],
                      classes: List[str],
                      thing_classes: List[str],
                      stuff_classes: List[str],
                      min_num_points: int,
                      id_offset: int,
                      label2cat: Dict[str, str],
                      ignore_index: List[int],
                      logger: MMLogger = None) -> Dict[str, float]:
    """Panoptic Segmentation Evaluation.

    Evaluate the result of the panoptic segmentation.

    Args:
        gt_labels (list[dict[np.ndarray]]): Ground Truth.
        seg_preds (list[dict[np.ndarray]]): Predictions.
        classes (list[str]): Classes used in the dataset.
        thing_classes (list[str]): Thing classes used in the dataset.
        stuff_classes (list[str]): Stuff classes used in the dataset.
        min_num_points (int): Minimum point number of object to be
            counted as ground truth in evaluation.
        id_offset (int): Offset for instance ids to concat with
            semantic labels.
        label2cat (dict[str]): Mapping from label to category.
        ignore_index (list[int]): Indices of ignored classes in evaluation.
        logger (logging.Logger | str, optional): Logger used for printing.
            Defaults to None.

    Returns:
        dict[float]: Dict of results.
    """
    panoptic_seg_eval = EvalPanoptic(classes, thing_classes, stuff_classes,
                                     min_num_points, id_offset, label2cat,
                                     ignore_index, logger)
    ret_dict = panoptic_seg_eval.evaluate(gt_labels, seg_preds)
    return ret_dict