detr3d_transformer.py 17.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import warnings

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn.bricks.transformer import (TransformerLayerSequence,
                                         build_transformer_layer_sequence)
from mmcv.ops.multi_scale_deform_attn import MultiScaleDeformableAttention
from mmengine.model import BaseModule, constant_init, xavier_init

from mmdet3d.registry import MODELS


def inverse_sigmoid(x, eps=1e-5):
    """Inverse function of sigmoid.

    Args:
        x (Tensor): The tensor to do the
            inverse.
        eps (float): EPS avoid numerical
            overflow. Defaults 1e-5.
    Returns:
        Tensor: The x has passed the inverse
            function of sigmoid, has same
            shape with input.
    """
    x = x.clamp(min=0, max=1)
    x1 = x.clamp(min=eps)
    x2 = (1 - x).clamp(min=eps)
    return torch.log(x1 / x2)


@MODELS.register_module()
class Detr3DTransformer(BaseModule):
    """Implements the DETR3D transformer.

    Args:
        as_two_stage (bool): Generate query from encoder features.
            Default: False.
        num_feature_levels (int): Number of feature maps from FPN:
            Default: 4.
        num_cams (int): Number of cameras in the dataset.
            Default: 6 in NuScenes Det.
        two_stage_num_proposals (int): Number of proposals when set
            `as_two_stage` as True. Default: 300.
    """

    def __init__(self,
                 num_feature_levels=4,
                 num_cams=6,
                 two_stage_num_proposals=300,
                 decoder=None,
                 **kwargs):
        super(Detr3DTransformer, self).__init__(**kwargs)
        self.decoder = build_transformer_layer_sequence(decoder)
        self.embed_dims = self.decoder.embed_dims
        self.num_feature_levels = num_feature_levels
        self.num_cams = num_cams
        self.two_stage_num_proposals = two_stage_num_proposals
        self.init_layers()

    def init_layers(self):
        """Initialize layers of the Detr3DTransformer."""
        self.reference_points = nn.Linear(self.embed_dims, 3)

    def init_weights(self):
        """Initialize the transformer weights."""
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        for m in self.modules():
            if isinstance(m, MultiScaleDeformableAttention) or isinstance(
                    m, Detr3DCrossAtten):
                m.init_weight()
        xavier_init(self.reference_points, distribution='uniform', bias=0.)

    def forward(self, mlvl_feats, query_embed, reg_branches=None, **kwargs):
        """Forward function for `Detr3DTransformer`.
        Args:
            mlvl_feats (list(Tensor)): Input queries from
                different level. Each element has shape
                (B, N, C, H_lvl, W_lvl).
            query_embed (Tensor): The query positional and semantic embedding
                for decoder, with shape [num_query, c+c].
            mlvl_pos_embeds (list(Tensor)): The positional encoding
                of feats from different level, has the shape
                [bs, N, embed_dims, h, w]. It is unused here.
            reg_branches (obj:`nn.ModuleList`): Regression heads for
                feature maps from each decoder layer. Only would
                be passed when `with_box_refine` is True. Default to None.
        Returns:
            tuple[Tensor]: results of decoder containing the following tensor.
                - inter_states: Outputs from decoder. If
                    return_intermediate_dec is True output has shape
                      (num_dec_layers, bs, num_query, embed_dims), else has
                      shape (1, bs, num_query, embed_dims).
                - init_reference_out: The initial value of reference
                    points, has shape (bs, num_queries, 4).
                - inter_references_out: The internal value of reference
                    points in decoder, has shape
                    (num_dec_layers, bs, num_query, embed_dims)
        """
        assert query_embed is not None
        bs = mlvl_feats[0].size(0)
        query_pos, query = torch.split(query_embed, self.embed_dims, dim=1)
        query_pos = query_pos.unsqueeze(0).expand(bs, -1, -1)  # [bs,num_q,c]
        query = query.unsqueeze(0).expand(bs, -1, -1)  # [bs,num_q,c]
        reference_points = self.reference_points(query_pos)
        reference_points = reference_points.sigmoid()
        init_reference_out = reference_points

        # decoder
        query = query.permute(1, 0, 2)
        query_pos = query_pos.permute(1, 0, 2)
        inter_states, inter_references = self.decoder(
            query=query,
            key=None,
            value=mlvl_feats,
            query_pos=query_pos,
            reference_points=reference_points,
            reg_branches=reg_branches,
            **kwargs)

        inter_references_out = inter_references
        return inter_states, init_reference_out, inter_references_out


@MODELS.register_module()
class Detr3DTransformerDecoder(TransformerLayerSequence):
    """Implements the decoder in DETR3D transformer.

    Args:
        return_intermediate (bool): Whether to return intermediate outputs.
        coder_norm_cfg (dict): Config of last normalization layer. Default:
            `LN`.
    """

    def __init__(self, *args, return_intermediate=False, **kwargs):
        super(Detr3DTransformerDecoder, self).__init__(*args, **kwargs)
        self.return_intermediate = return_intermediate

    def forward(self,
                query,
                *args,
                reference_points=None,
                reg_branches=None,
                **kwargs):
        """Forward function for `Detr3DTransformerDecoder`.
        Args:
            query (Tensor): Input query with shape
                `(num_query, bs, embed_dims)`.
            reference_points (Tensor): The reference
                points of offset. has shape
                (bs, num_query, 4) when as_two_stage,
                otherwise has shape self.reference_points =
                                        nn.Linear(self.embed_dims, 3)
            reg_branch: (obj:`nn.ModuleList`): Used for
                refining the regression results. Only would
                be passed when with_box_refine is True,
                otherwise would be passed a `None`.
        Returns:
            Tensor: Results with shape [1, num_query, bs, embed_dims] when
                return_intermediate is `False`, otherwise it has shape
                [num_layers, num_query, bs, embed_dims].
        """
        output = query
        intermediate = []
        intermediate_reference_points = []
        for lid, layer in enumerate(self.layers):  # iterative refinement
            reference_points_input = reference_points
            output = layer(
                output,
                *args,
                reference_points=reference_points_input,
                **kwargs)
            output = output.permute(1, 0, 2)
            if reg_branches is not None:
                tmp = reg_branches[lid](output)

                assert reference_points.shape[-1] == 3

                new_reference_points = torch.zeros_like(reference_points)
                new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(
                    reference_points[..., :2])
                new_reference_points[...,
                                     2:3] = tmp[..., 4:5] + inverse_sigmoid(
                                         reference_points[..., 2:3])
                new_reference_points = new_reference_points.sigmoid()

                reference_points = new_reference_points.detach()

            output = output.permute(1, 0, 2)
            if self.return_intermediate:
                intermediate.append(output)
                intermediate_reference_points.append(reference_points)

        if self.return_intermediate:
            return torch.stack(intermediate), torch.stack(
                intermediate_reference_points)

        return output, reference_points


@MODELS.register_module()
class Detr3DCrossAtten(BaseModule):
    """An attention module used in Detr3d.

    Args:
        embed_dims (int): The embedding dimension of Attention.
            Default: 256.
        num_heads (int): Parallel attention heads. Default: 64.
        num_levels (int): The number of feature map used in
            Attention. Default: 4.
        num_points (int): The number of sampling points for
            each query in each head. Default: 4.
        im2col_step (int): The step used in image_to_column.
            Default: 64.
        dropout (float): A Dropout layer on `inp_residual`.
            Default: 0..
        init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
            Default: None.
    """

    def __init__(
        self,
        embed_dims=256,
        num_heads=8,
        num_levels=4,
        num_points=5,
        num_cams=6,
        im2col_step=64,
        pc_range=None,
        dropout=0.1,
        norm_cfg=None,
        init_cfg=None,
        batch_first=False,
    ):
        super(Detr3DCrossAtten, self).__init__(init_cfg)
        if embed_dims % num_heads != 0:
            raise ValueError(f'embed_dims must be divisible by num_heads, '
                             f'but got {embed_dims} and {num_heads}')
        dim_per_head = embed_dims // num_heads
        self.norm_cfg = norm_cfg
        self.init_cfg = init_cfg
        self.dropout = nn.Dropout(dropout)
        self.pc_range = pc_range

        # you'd better set dim_per_head to a power of 2
        # which is more efficient in the CUDA implementation
        def _is_power_of_2(n):
            if (not isinstance(n, int)) or (n < 0):
                raise ValueError(
                    'invalid input for _is_power_of_2: {} (type: {})'.format(
                        n, type(n)))
            return (n & (n - 1) == 0) and n != 0

        if not _is_power_of_2(dim_per_head):
            warnings.warn(
                "You'd better set embed_dims in "
                'MultiScaleDeformAttention to make '
                'the dimension of each attention head a power of 2 '
                'which is more efficient in our CUDA implementation.')

        self.im2col_step = im2col_step
        self.embed_dims = embed_dims
        self.num_levels = num_levels
        self.num_heads = num_heads
        self.num_points = num_points
        self.num_cams = num_cams
        self.attention_weights = nn.Linear(embed_dims,
                                           num_cams * num_levels * num_points)

        self.output_proj = nn.Linear(embed_dims, embed_dims)

        self.position_encoder = nn.Sequential(
            nn.Linear(3, self.embed_dims),
            nn.LayerNorm(self.embed_dims),
            nn.ReLU(inplace=True),
            nn.Linear(self.embed_dims, self.embed_dims),
            nn.LayerNorm(self.embed_dims),
            nn.ReLU(inplace=True),
        )
        self.batch_first = batch_first
        self.init_weight()

    def init_weight(self):
        """Default initialization for Parameters of Module."""
        constant_init(self.attention_weights, val=0., bias=0.)
        xavier_init(self.output_proj, distribution='uniform', bias=0.)

    def forward(self,
                query,
                key,
                value,
                residual=None,
                query_pos=None,
                reference_points=None,
                **kwargs):
        """Forward Function of Detr3DCrossAtten.

        Args:
            query (Tensor): Query of Transformer with shape
                (num_query, bs, embed_dims).
            key (Tensor): The key tensor with shape
                `(num_key, bs, embed_dims)`.
            value (List[Tensor]): Image features from
                different level. Each element has shape
                (B, N, C, H_lvl, W_lvl).
            residual (Tensor): The tensor used for addition, with the
                same shape as `x`. Default None. If None, `x` will be used.
            query_pos (Tensor): The positional encoding for `query`.
                Default: None.
            reference_points (Tensor): The normalized 3D reference
                points with shape (bs, num_query, 3)
        Returns:
             Tensor: forwarded results with shape [num_query, bs, embed_dims].
        """
        if key is None:
            key = query
        if value is None:
            value = key

        if residual is None:
            inp_residual = query
        if query_pos is not None:
            query = query + query_pos

        query = query.permute(1, 0, 2)

        bs, num_query, _ = query.size()

        attention_weights = self.attention_weights(query).view(
            bs, 1, num_query, self.num_cams, self.num_points, self.num_levels)
        reference_points_3d, output, mask = feature_sampling(
            value, reference_points, self.pc_range, kwargs['img_metas'])
        output = torch.nan_to_num(output)
        mask = torch.nan_to_num(mask)
        attention_weights = attention_weights.sigmoid() * mask
        output = output * attention_weights
        output = output.sum(-1).sum(-1).sum(-1)
        output = output.permute(2, 0, 1)
        # (num_query, bs, embed_dims)
        output = self.output_proj(output)
        pos_feat = self.position_encoder(
            inverse_sigmoid(reference_points_3d)).permute(1, 0, 2)
        return self.dropout(output) + inp_residual + pos_feat


def feature_sampling(mlvl_feats,
                     ref_pt,
                     pc_range,
                     img_metas,
                     no_sampling=False):
    """ sample multi-level features by projecting 3D reference points
            to 2D image
        Args:
            mlvl_feats (List[Tensor]): Image features from
                different level. Each element has shape
                (B, N, C, H_lvl, W_lvl).
            ref_pt (Tensor): The normalized 3D reference
                points with shape (bs, num_query, 3)
            pc_range: perception range of the detector
            img_metas (list[dict]): Meta information of multiple inputs
                in a batch, containing `lidar2img`.
            no_sampling (bool): If set 'True', the function will return
                2D projected points and mask only.
        Returns:
            ref_pt_3d (Tensor): A copy of original ref_pt
            sampled_feats (Tensor): sampled features with shape \
                (B C num_q N 1 fpn_lvl)
            mask (Tensor): Determine whether the reference point \
                has projected outsied of images, with shape \
                (B 1 num_q N 1 1)
    """
    lidar2img = [meta['lidar2img'] for meta in img_metas]
    lidar2img = np.asarray(lidar2img)
    lidar2img = ref_pt.new_tensor(lidar2img)
    ref_pt = ref_pt.clone()
    ref_pt_3d = ref_pt.clone()

    B, num_query = ref_pt.size()[:2]
    num_cam = lidar2img.size(1)
    eps = 1e-5

    ref_pt[..., 0:1] = \
        ref_pt[..., 0:1] * (pc_range[3] - pc_range[0]) + pc_range[0]  # x
    ref_pt[..., 1:2] = \
        ref_pt[..., 1:2] * (pc_range[4] - pc_range[1]) + pc_range[1]  # y
    ref_pt[..., 2:3] = \
        ref_pt[..., 2:3] * (pc_range[5] - pc_range[2]) + pc_range[2]  # z

    # (B num_q 3) -> (B num_q 4) -> (B 1 num_q 4) -> (B num_cam num_q 4 1)
    ref_pt = torch.cat((ref_pt, torch.ones_like(ref_pt[..., :1])), -1)
    ref_pt = ref_pt.view(B, 1, num_query, 4)
    ref_pt = ref_pt.repeat(1, num_cam, 1, 1).unsqueeze(-1)
    # (B num_cam 4 4) -> (B num_cam num_q 4 4)
    lidar2img = lidar2img.view(B, num_cam, 1, 4, 4)\
                         .repeat(1, 1, num_query, 1, 1)
    # (... 4 4) * (... 4 1) -> (B num_cam num_q 4)
    pt_cam = torch.matmul(lidar2img, ref_pt).squeeze(-1)

    # (B num_cam num_q)
    z = pt_cam[..., 2:3]
    eps = eps * torch.ones_like(z)
    mask = (z > eps)
    pt_cam = pt_cam[..., 0:2] / torch.maximum(z, eps)  # prevent zero-division
    # padded nuscene image: 928*1600
    (h, w) = img_metas[0]['pad_shape']
    pt_cam[..., 0] /= w
    pt_cam[..., 1] /= h
    # else:
    # (h,w,_) = img_metas[0]['ori_shape'][0]          # waymo image
    # pt_cam[..., 0] /= w # cam0~2: 1280*1920
    # pt_cam[..., 1] /= h # cam3~4: 886 *1920 padded to 1280*1920
    # mask[:, 3:5, :] &= (pt_cam[:, 3:5, :, 1:2] < 0.7) # filter pt_cam_y > 886

    mask = (
        mask & (pt_cam[..., 0:1] > 0.0)
        & (pt_cam[..., 0:1] < 1.0)
        & (pt_cam[..., 1:2] > 0.0)
        & (pt_cam[..., 1:2] < 1.0))

    if no_sampling:
        return pt_cam, mask

    # (B num_cam num_q) -> (B 1 num_q num_cam 1 1)
    mask = mask.view(B, num_cam, 1, num_query, 1, 1).permute(0, 2, 3, 1, 4, 5)
    mask = torch.nan_to_num(mask)

    pt_cam = (pt_cam - 0.5) * 2  # [0,1] to [-1,1] to do grid_sample
    sampled_feats = []
    for lvl, feat in enumerate(mlvl_feats):
        B, N, C, H, W = feat.size()
        feat = feat.view(B * N, C, H, W)
        pt_cam_lvl = pt_cam.view(B * N, num_query, 1, 2)
        sampled_feat = F.grid_sample(feat, pt_cam_lvl)
        # (B num_cam C num_query 1) -> List of (B C num_q num_cam 1)
        sampled_feat = sampled_feat.view(B, N, C, num_query, 1)
        sampled_feat = sampled_feat.permute(0, 2, 3, 1, 4)
        sampled_feats.append(sampled_feat)

    sampled_feats = torch.stack(sampled_feats, -1)
    # (B C num_q num_cam fpn_lvl)
    sampled_feats = \
        sampled_feats.view(B, C, num_query, num_cam, 1, len(mlvl_feats))
    return ref_pt_3d, sampled_feats, mask