test_utils.py 6.16 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
import numpy as np
import pytest
4
5
import torch

6
from mmdet3d.core import array_converter, draw_heatmap_gaussian
7
8
9
10
11
12
13
14


def test_gaussian():
    heatmap = torch.zeros((128, 128))
    ct_int = torch.tensor([64, 64], dtype=torch.int32)
    radius = 2
    draw_heatmap_gaussian(heatmap, ct_int, radius)
    assert torch.isclose(torch.sum(heatmap), torch.tensor(4.3505), atol=1e-3)
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180


def test_array_converter():
    # to torch
    @array_converter(to_torch=True, apply_to=('array_a', 'array_b'))
    def test_func_1(array_a, array_b, container):
        container.append(array_a)
        container.append(array_b)
        return array_a.clone(), array_b.clone()

    np_array_a = np.array([0.0])
    np_array_b = np.array([0.0])
    container = []
    new_array_a, new_array_b = test_func_1(np_array_a, np_array_b, container)

    assert isinstance(new_array_a, np.ndarray)
    assert isinstance(new_array_b, np.ndarray)
    assert isinstance(container[0], torch.Tensor)
    assert isinstance(container[1], torch.Tensor)

    # one to torch and one not
    @array_converter(to_torch=True, apply_to=('array_a', ))
    def test_func_2(array_a, array_b):
        return torch.cat([array_a, array_b])

    with pytest.raises(TypeError):
        _ = test_func_2(np_array_a, np_array_b)

    # wrong template_arg_name_
    @array_converter(
        to_torch=True, apply_to=('array_a', ), template_arg_name_='array_c')
    def test_func_3(array_a, array_b):
        return torch.cat([array_a, array_b])

    with pytest.raises(ValueError):
        _ = test_func_3(np_array_a, np_array_b)

    # wrong apply_to
    @array_converter(to_torch=True, apply_to=('array_a', 'array_c'))
    def test_func_4(array_a, array_b):
        return torch.cat([array_a, array_b])

    with pytest.raises(ValueError):
        _ = test_func_4(np_array_a, np_array_b)

    # to numpy
    @array_converter(to_torch=False, apply_to=('array_a', 'array_b'))
    def test_func_5(array_a, array_b, container):
        container.append(array_a)
        container.append(array_b)
        return array_a.copy(), array_b.copy()

    pt_array_a = torch.tensor([0.0])
    pt_array_b = torch.tensor([0.0])
    container = []
    new_array_a, new_array_b = test_func_5(pt_array_a, pt_array_b, container)

    assert isinstance(container[0], np.ndarray)
    assert isinstance(container[1], np.ndarray)
    assert isinstance(new_array_a, torch.Tensor)
    assert isinstance(new_array_b, torch.Tensor)

    # apply_to = None
    @array_converter(to_torch=False)
    def test_func_6(array_a, array_b, container):
        container.append(array_a)
        container.append(array_b)
        return array_a.clone(), array_b.clone()

    container = []
    new_array_a, new_array_b = test_func_6(pt_array_a, pt_array_b, container)

    assert isinstance(container[0], torch.Tensor)
    assert isinstance(container[1], torch.Tensor)
    assert isinstance(new_array_a, torch.Tensor)
    assert isinstance(new_array_b, torch.Tensor)

    # with default arg
    @array_converter(to_torch=True, apply_to=('array_a', 'array_b'))
    def test_func_7(array_a, container, array_b=np.array([2.])):
        container.append(array_a)
        container.append(array_b)
        return array_a.clone(), array_b.clone()

    container = []
    new_array_a, new_array_b = test_func_7(np_array_a, container)

    assert isinstance(container[0], torch.Tensor)
    assert isinstance(container[1], torch.Tensor)
    assert isinstance(new_array_a, np.ndarray)
    assert isinstance(new_array_b, np.ndarray)
    assert np.allclose(new_array_b, np.array([2.]), 1e-3)

    # override default arg

    container = []
    new_array_a, new_array_b = test_func_7(np_array_a, container,
                                           np.array([4.]))

    assert isinstance(container[0], torch.Tensor)
    assert isinstance(container[1], torch.Tensor)
    assert isinstance(new_array_a, np.ndarray)
    assert np.allclose(new_array_b, np.array([4.]), 1e-3)

    # list arg
    @array_converter(to_torch=True, apply_to=('array_a', 'array_b'))
    def test_func_8(container, array_a, array_b=[2.]):
        container.append(array_a)
        container.append(array_b)
        return array_a.clone(), array_b.clone()

    container = []
    new_array_a, new_array_b = test_func_8(container, [3.])

    assert isinstance(container[0], torch.Tensor)
    assert isinstance(container[1], torch.Tensor)
    assert np.allclose(new_array_a, np.array([3.]), 1e-3)
    assert np.allclose(new_array_b, np.array([2.]), 1e-3)

    # number arg
    @array_converter(to_torch=True, apply_to=('array_a', 'array_b'))
    def test_func_9(container, array_a, array_b=1):
        container.append(array_a)
        container.append(array_b)
        return array_a.clone(), array_b.clone()

    container = []
    new_array_a, new_array_b = test_func_9(container, np_array_a)

    assert isinstance(container[0], torch.FloatTensor)
    assert isinstance(container[1], torch.FloatTensor)
    assert np.allclose(new_array_a, np_array_a, 1e-3)
    assert np.allclose(new_array_b, np.array(1.0), 1e-3)

    # feed kwargs
    container = []
    kwargs = {'array_a': [5.], 'array_b': [6.]}
    new_array_a, new_array_b = test_func_8(container, **kwargs)

    assert isinstance(container[0], torch.Tensor)
    assert isinstance(container[1], torch.Tensor)
    assert np.allclose(new_array_a, np.array([5.]), 1e-3)
    assert np.allclose(new_array_b, np.array([6.]), 1e-3)

    # feed args and kwargs
    container = []
    kwargs = {'array_b': [7.]}
    args = (container, [8.])
    new_array_a, new_array_b = test_func_8(*args, **kwargs)

    assert isinstance(container[0], torch.Tensor)
    assert isinstance(container[1], torch.Tensor)
    assert np.allclose(new_array_a, np.array([8.]), 1e-3)
    assert np.allclose(new_array_b, np.array([7.]), 1e-3)

    # wrong template arg type
    with pytest.raises(TypeError):
        new_array_a, new_array_b = test_func_9(container, 3 + 4j)

    with pytest.raises(TypeError):
        new_array_a, new_array_b = test_func_9(container, {})

    # invalid template arg list
    with pytest.raises(TypeError):
        new_array_a, new_array_b = test_func_9(container,
                                               [True, np.array([3.0])])