test_sunrgbd_dataset.py 3.42 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
5
6
7
8
# Copyright (c) OpenMMLab. All rights reserved.
import unittest

import numpy as np
import torch
from mmengine.testing import assert_allclose

from mmdet3d.datasets import SUNRGBDDataset
zhangshilong's avatar
zhangshilong committed
9
from mmdet3d.structures import DepthInstance3DBoxes
jshilong's avatar
jshilong committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97


def _generate_scannet_dataset_config():
    data_root = 'tests/data/sunrgbd'
    ann_file = 'sunrgbd_infos.pkl'

    classes = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
               'night_stand', 'bookshelf', 'bathtub')

    from mmcv.transforms.base import BaseTransform
    from mmengine.registry import TRANSFORMS

    if 'Identity' not in TRANSFORMS:

        @TRANSFORMS.register_module()
        class Identity(BaseTransform):

            def transform(self, info):
                if 'ann_info' in info:
                    info['gt_labels_3d'] = info['ann_info']['gt_labels_3d']
                return info

    modality = dict(use_camera=True, use_lidar=True)
    pipeline = [
        dict(type='Identity'),
    ]
    data_prefix = dict(pts='points', img='sunrgbd_trainval')
    return data_root, ann_file, classes, data_prefix, pipeline, modality


class TestScanNetDataset(unittest.TestCase):

    def test_sunrgbd_ataset(self):
        np.random.seed(0)
        data_root, ann_file, classes, data_prefix, \
            pipeline, modality, = _generate_scannet_dataset_config()
        scannet_dataset = SUNRGBDDataset(
            data_root,
            ann_file,
            data_prefix=data_prefix,
            pipeline=pipeline,
            metainfo=dict(CLASSES=classes),
            modality=modality)

        scannet_dataset.prepare_data(0)
        input_dict = scannet_dataset.get_data_info(0)
        scannet_dataset[0]
        # assert the the path should contains data_prefix and data_root
        assert data_prefix['pts'] in input_dict['lidar_points']['lidar_path']
        assert data_root in input_dict['lidar_points']['lidar_path']
        for cam_id, img_info in input_dict['images'].items():
            if 'img_path' in img_info:
                assert data_prefix['img'] in img_info['img_path']
                assert data_root in img_info['img_path']

        ann_info = scannet_dataset.parse_ann_info(input_dict)

        # assert the keys in ann_info and the type
        except_label = np.array([0, 7, 6])

        self.assertEqual(ann_info['gt_labels_3d'].dtype, np.int64)
        assert_allclose(ann_info['gt_labels_3d'], except_label)
        self.assertIsInstance(ann_info['gt_bboxes_3d'], DepthInstance3DBoxes)

        self.assertEqual(len(ann_info['gt_bboxes_3d']), 3)
        assert_allclose(ann_info['gt_bboxes_3d'].tensor.sum(),
                        torch.tensor(19.2575))

        classes = ['bed']
        bed_scannet_dataset = SUNRGBDDataset(
            data_root,
            ann_file,
            data_prefix=data_prefix,
            pipeline=pipeline,
            metainfo=dict(CLASSES=classes),
            modality=modality)

        input_dict = bed_scannet_dataset.get_data_info(0)
        ann_info = bed_scannet_dataset.parse_ann_info(input_dict)

        # assert the keys in ann_info and the type
        self.assertIn('gt_labels_3d', ann_info)
        # assert mapping to -1 or 1
        assert (ann_info['gt_labels_3d'] <= 0).all()
        assert ann_info['gt_labels_3d'].dtype == np.int64
        # all instance have been filtered by classes
        self.assertEqual(len(ann_info['gt_labels_3d']), 3)
        self.assertEqual(len(bed_scannet_dataset.metainfo['CLASSES']), 1)