s3dis_dataset.py 14.6 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
from os import path as osp
ZCMax's avatar
ZCMax committed
3
from typing import Callable, List, Optional, Union
4

5
6
import numpy as np

7
from mmdet3d.registry import DATASETS
zhangshilong's avatar
zhangshilong committed
8
from mmdet3d.structures import DepthInstance3DBoxes
jshilong's avatar
jshilong committed
9
from .det3d_dataset import Det3DDataset
ZCMax's avatar
ZCMax committed
10
from .seg3d_dataset import Seg3DDataset
zhangshilong's avatar
zhangshilong committed
11
from .transforms import Compose
12
13
14


@DATASETS.register_module()
jshilong's avatar
jshilong committed
15
class S3DISDataset(Det3DDataset):
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    r"""S3DIS Dataset for Detection Task.

    This class is the inner dataset for S3DIS. Since S3DIS has 6 areas, we
    often train on 5 of them and test on the remaining one. The one for
    test is Area_5 as suggested in `GSDN <https://arxiv.org/abs/2006.12356>`_.
    To concatenate 5 areas during training
    `mmdet.datasets.dataset_wrappers.ConcatDataset` should be used.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'Depth' in this dataset. Available options includes

            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
    CLASSES = ('table', 'chair', 'sofa', 'bookcase', 'board')

    def __init__(self,
                 data_root,
                 ann_file,
                 pipeline=None,
                 classes=None,
                 modality=None,
                 box_type_3d='Depth',
                 filter_empty_gt=True,
56
57
                 test_mode=False,
                 *kwargs):
58
59
60
61
62
63
64
65
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
66
67
            test_mode=test_mode,
            *kwargs)
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

    def get_ann_info(self, index):
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: annotation information consists of the following keys:

                - gt_bboxes_3d (:obj:`DepthInstance3DBoxes`):
                    3D ground truth bboxes
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - pts_instance_mask_path (str): Path of instance masks.
                - pts_semantic_mask_path (str): Path of semantic masks.
        """
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.data_infos[index]
        if info['annos']['gt_num'] != 0:
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
                np.float32)  # k, 6
WRH's avatar
WRH committed
89
            gt_labels_3d = info['annos']['class'].astype(np.int64)
90
91
        else:
            gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
WRH's avatar
WRH committed
92
            gt_labels_3d = np.zeros((0, ), dtype=np.int64)
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

        # to target box structure
        gt_bboxes_3d = DepthInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
            with_yaw=False,
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

        pts_instance_mask_path = osp.join(self.data_root,
                                          info['pts_instance_mask_path'])
        pts_semantic_mask_path = osp.join(self.data_root,
                                          info['pts_semantic_mask_path'])

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
            gt_labels_3d=gt_labels_3d,
            pts_instance_mask_path=pts_instance_mask_path,
            pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results

    def get_data_info(self, index):
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
            dict: Data information that will be passed to the data
zhangshilong's avatar
zhangshilong committed
121
                preprocessing transforms. It includes the following keys:
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

                - pts_filename (str): Filename of point clouds.
                - file_name (str): Filename of point clouds.
                - ann_info (dict): Annotation info.
        """
        info = self.data_infos[index]
        pts_filename = osp.join(self.data_root, info['pts_path'])
        input_dict = dict(pts_filename=pts_filename)

        if not self.test_mode:
            annos = self.get_ann_info(index)
            input_dict['ann_info'] = annos
            if self.filter_empty_gt and ~(annos['gt_labels_3d'] != -1).any():
                return None
        return input_dict

    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='DEPTH',
                shift_height=False,
                load_dim=6,
                use_dim=[0, 1, 2, 3, 4, 5]),
            dict(
                type='DefaultFormatBundle3D',
                class_names=self.CLASSES,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ]
        return Compose(pipeline)


ZCMax's avatar
ZCMax committed
156
class _S3DISSegDataset(Seg3DDataset):
157
158
159
160
161
162
163
164
165
166
167
168
    r"""S3DIS Dataset for Semantic Segmentation Task.

    This class is the inner dataset for S3DIS. Since S3DIS has 6 areas, we
    often train on 5 of them and test on the remaining one.
    However, there is not a fixed train-test split of S3DIS. People often test
    on Area_5 as suggested by `SEGCloud <https://arxiv.org/abs/1710.07563>`_.
    But many papers also report the average results of 6-fold cross validation
    over the 6 areas (e.g. `DGCNN <https://arxiv.org/abs/1801.07829>`_).
    Therefore, we use an inner dataset for one area, and further use a dataset
    wrapper to concat all the provided data in different areas.

    Args:
169
170
171
172
173
174
175
176
177
178
        data_root (str, optional): Path of dataset root, Defaults to None.
        ann_file (str): Path of annotation file. Defaults to ''.
        metainfo (dict, optional): Meta information for dataset, such as class
            information. Defaults to None.
        data_prefix (dict): Prefix for training data. Defaults to
            dict(pts='points', instance_mask='', semantic_mask='').
        pipeline (list[dict]): Pipeline used for data processing.
            Defaults to [].
        modality (dict): Modality to specify the sensor data used as input.
            Defaults to dict(use_lidar=True, use_camera=False).
179
        ignore_index (int, optional): The label index to be ignored, e.g.
180
181
            unannotated points. If None is given, set to len(self.CLASSES) to
            be consistent with PointSegClassMapping function in pipeline.
182
183
184
185
            Defaults to None.
        scene_idxs (np.ndarray | str, optional): Precomputed index to load
            data. For scenes with many points, we may sample it several times.
            Defaults to None.
186
187
        test_mode (bool): Whether the dataset is in test mode.
            Defaults to False.
188
    """
ZCMax's avatar
ZCMax committed
189
190
191
192
193
194
195
196
    METAINFO = {
        'CLASSES':
        ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',
         'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter'),
        'PALETTE': [[0, 255, 0], [0, 0, 255], [0, 255, 255], [255, 255, 0],
                    [255, 0, 255], [100, 100, 255], [200, 200, 100],
                    [170, 120, 200], [255, 0, 0], [200, 100, 100],
                    [10, 200, 100], [200, 200, 200], [50, 50, 50]],
197
        'seg_valid_class_ids':
ZCMax's avatar
ZCMax committed
198
        tuple(range(13)),
199
        'seg_all_class_ids':
ZCMax's avatar
ZCMax committed
200
201
        tuple(range(14))  # possibly with 'stair' class
    }
202
203

    def __init__(self,
ZCMax's avatar
ZCMax committed
204
205
206
207
208
209
210
                 data_root: Optional[str] = None,
                 ann_file: str = '',
                 metainfo: Optional[dict] = None,
                 data_prefix: dict = dict(
                     pts='points', img='', instance_mask='', semantic_mask=''),
                 pipeline: List[Union[dict, Callable]] = [],
                 modality: dict = dict(use_lidar=True, use_camera=False),
211
212
213
                 ignore_index: Optional[int] = None,
                 scene_idxs: Optional[Union[np.ndarray, str]] = None,
                 test_mode: bool = False,
ZCMax's avatar
ZCMax committed
214
                 **kwargs) -> None:
215
216
217
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
ZCMax's avatar
ZCMax committed
218
219
            metainfo=metainfo,
            data_prefix=data_prefix,
220
221
222
            pipeline=pipeline,
            modality=modality,
            ignore_index=ignore_index,
223
            scene_idxs=scene_idxs,
ZCMax's avatar
ZCMax committed
224
            test_mode=test_mode,
225
            **kwargs)
226

227
228
    def get_scene_idxs(self, scene_idxs):
        """Compute scene_idxs for data sampling.
229

230
        We sample more times for scenes with more points.
231
232
233
234
235
236
        """
        # when testing, we load one whole scene every time
        if not self.test_mode and scene_idxs is None:
            raise NotImplementedError(
                'please provide re-sampled scene indexes for training')

237
        return super().get_scene_idxs(scene_idxs)
238
239
240
241
242
243
244
245
246


@DATASETS.register_module()
class S3DISSegDataset(_S3DISSegDataset):
    r"""S3DIS Dataset for Semantic Segmentation Task.

    This class serves as the API for experiments on the S3DIS Dataset.
    It wraps the provided datasets of different areas.
    We don't use `mmdet.datasets.dataset_wrappers.ConcatDataset` because we
247
    need to concat the `scene_idxs` of different areas.
248
249
250
251
252
253

    Please refer to the `google form <https://docs.google.com/forms/d/e/1FAIpQL
    ScDimvNMCGhy_rmBA2gHfDu3naktRm6A8BPwAWWDv-Uhm6Shw/viewform?c=0&w=1>`_ for
    data downloading.

    Args:
254
        data_root (str, optional): Path of dataset root. Defaults to None.
255
        ann_files (list[str]): Path of several annotation files.
256
257
258
259
260
261
262
263
264
            Defaults to ''.
        metainfo (dict, optional): Meta information for dataset, such as class
            information. Defaults to None.
        data_prefix (dict): Prefix for training data. Defaults to
            dict(pts='points', instance_mask='', semantic_mask='').
        pipeline (list[dict]): Pipeline used for data processing.
            Defaults to [].
        modality (dict): Modality to specify the sensor data used as input.
            Defaults to dict(use_lidar=True, use_camera=False).
265
        ignore_index (int, optional): The label index to be ignored, e.g.
266
267
            unannotated points. If None is given, set to len(self.CLASSES) to
            be consistent with PointSegClassMapping function in pipeline.
268
269
            Defaults to None.
        scene_idxs (list[np.ndarray] | list[str], optional): Precomputed index
270
271
272
273
            to load data. For scenes with many points, we may sample it
            several times. Defaults to None.
        test_mode (bool): Whether the dataset is in test mode.
            Defaults to False.
274
275
276
    """

    def __init__(self,
ZCMax's avatar
ZCMax committed
277
                 data_root: Optional[str] = None,
278
                 ann_files: List[str] = '',
ZCMax's avatar
ZCMax committed
279
280
281
282
283
                 metainfo: Optional[dict] = None,
                 data_prefix: dict = dict(
                     pts='points', img='', instance_mask='', semantic_mask=''),
                 pipeline: List[Union[dict, Callable]] = [],
                 modality: dict = dict(use_lidar=True, use_camera=False),
284
285
286
287
                 ignore_index: Optional[int] = None,
                 scene_idxs: Optional[Union[List[np.ndarray],
                                            List[str]]] = None,
                 test_mode: bool = False,
ZCMax's avatar
ZCMax committed
288
                 **kwargs) -> None:
289

290
        # make sure that ann_files and scene_idxs have same length
291
292
293
294
295
296
297
        ann_files = self._check_ann_files(ann_files)
        scene_idxs = self._check_scene_idxs(scene_idxs, len(ann_files))

        # initialize some attributes as datasets[0]
        super().__init__(
            data_root=data_root,
            ann_file=ann_files[0],
ZCMax's avatar
ZCMax committed
298
299
            metainfo=metainfo,
            data_prefix=data_prefix,
300
301
302
            pipeline=pipeline,
            modality=modality,
            ignore_index=ignore_index,
303
            scene_idxs=scene_idxs[0],
ZCMax's avatar
ZCMax committed
304
            test_mode=test_mode,
ChaimZhu's avatar
ChaimZhu committed
305
            serialize_data=False,
306
            **kwargs)
307
308
309
310
311

        datasets = [
            _S3DISSegDataset(
                data_root=data_root,
                ann_file=ann_files[i],
ZCMax's avatar
ZCMax committed
312
313
                metainfo=metainfo,
                data_prefix=data_prefix,
314
315
316
                pipeline=pipeline,
                modality=modality,
                ignore_index=ignore_index,
317
                scene_idxs=scene_idxs[i],
ZCMax's avatar
ZCMax committed
318
                test_mode=test_mode,
319
                **kwargs) for i in range(len(ann_files))
320
321
        ]

ZCMax's avatar
ZCMax committed
322
323
        # data_list and scene_idxs need to be concat
        self.concat_data_list([dst.data_list for dst in datasets])
324
325
326
327
328

        # set group flag for the sampler
        if not self.test_mode:
            self._set_group_flag()

329
    def concat_data_list(self, data_lists: List[List[dict]]) -> List[dict]:
ZCMax's avatar
ZCMax committed
330
        """Concat data_list from several datasets to form self.data_list.
331
332

        Args:
ZCMax's avatar
ZCMax committed
333
            data_lists (list[list[dict]])
334
        """
ZCMax's avatar
ZCMax committed
335
336
        self.data_list = [
            data for data_list in data_lists for data in data_list
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
        ]

    @staticmethod
    def _duplicate_to_list(x, num):
        """Repeat x `num` times to form a list."""
        return [x for _ in range(num)]

    def _check_ann_files(self, ann_file):
        """Make ann_files as list/tuple."""
        # ann_file could be str
        if not isinstance(ann_file, (list, tuple)):
            ann_file = self._duplicate_to_list(ann_file, 1)
        return ann_file

    def _check_scene_idxs(self, scene_idx, num):
        """Make scene_idxs as list/tuple."""
        if scene_idx is None:
            return self._duplicate_to_list(scene_idx, num)
        # scene_idx could be str, np.ndarray, list or tuple
        if isinstance(scene_idx, str):  # str
            return self._duplicate_to_list(scene_idx, num)
        if isinstance(scene_idx[0], str):  # list of str
            return scene_idx
        if isinstance(scene_idx[0], (list, tuple, np.ndarray)):  # list of idx
            return scene_idx
        # single idx
        return self._duplicate_to_list(scene_idx, num)