custom_3d.py 5.19 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
import os.path as osp
import tempfile

4
5
import mmcv
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
6
from torch.utils.data import Dataset
7
8
9
10
11
12

from mmdet.datasets import DATASETS
from .pipelines import Compose


@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
13
class Custom3DDataset(Dataset):
14
15

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
16
                 data_root,
17
18
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
19
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
20
21
                 modality=None,
                 test_mode=False):
22
        super().__init__()
zhangwenwei's avatar
zhangwenwei committed
23
24
        self.data_root = data_root
        self.ann_file = ann_file
25
        self.test_mode = test_mode
zhangwenwei's avatar
zhangwenwei committed
26
27
28
29
        self.modality = modality

        self.CLASSES = self.get_classes(classes)
        self.data_infos = self.load_annotations(self.ann_file)
30
31
32
33

        if pipeline is not None:
            self.pipeline = Compose(pipeline)

zhangwenwei's avatar
zhangwenwei committed
34
35
36
37
38
39
        # set group flag for the sampler
        if not self.test_mode:
            self._set_group_flag()

    def load_annotations(self, ann_file):
        return mmcv.load(ann_file)
40
41
42
43
44
45

    def get_data_info(self, index):
        info = self.data_infos[index]
        sample_idx = info['point_cloud']['lidar_idx']
        pts_filename = self._get_pts_filename(sample_idx)

liyinhao's avatar
liyinhao committed
46
47
48
49
        input_dict = dict(
            pts_filename=pts_filename,
            sample_idx=sample_idx,
            file_name=pts_filename)
50

zhangwenwei's avatar
zhangwenwei committed
51
        if not self.test_mode:
liyinhao's avatar
liyinhao committed
52
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
53
54
55
            input_dict['ann_info'] = annos
            if len(annos['gt_bboxes_3d']) == 0:
                return None
56
57
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
58
59
60
61
    def pre_pipeline(self, results):
        results['bbox3d_fields'] = []
        results['pts_mask_fields'] = []
        results['pts_seg_fields'] = []
62

liyinhao's avatar
liyinhao committed
63
64
    def prepare_train_data(self, index):
        input_dict = self.get_data_info(index)
65
66
        if input_dict is None:
            return None
zhangwenwei's avatar
zhangwenwei committed
67
        self.pre_pipeline(input_dict)
68
        example = self.pipeline(input_dict)
zhangwenwei's avatar
zhangwenwei committed
69
        if example is None or len(example['gt_bboxes_3d']._data) == 0:
70
71
72
            return None
        return example

73
74
    def prepare_test_data(self, index):
        input_dict = self.get_data_info(index)
zhangwenwei's avatar
zhangwenwei committed
75
        self.pre_pipeline(input_dict)
76
77
        example = self.pipeline(input_dict)
        return example
78

liyinhao's avatar
liyinhao committed
79
80
    @classmethod
    def get_classes(cls, classes=None):
81
82
        """Get class names of current dataset.

liyinhao's avatar
liyinhao committed
83
84
85
86
87
88
        Args:
            classes (Sequence[str] | str | None): If classes is None, use
                default CLASSES defined by builtin dataset. If classes is a
                string, take it as a file name. The file contains the name of
                classes where each line contains one class name. If classes is
                a tuple or list, override the CLASSES defined by the dataset.
zhangwenwei's avatar
zhangwenwei committed
89
90
91

        Return:
            list[str]: return the list of class names
liyinhao's avatar
liyinhao committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        """
        if classes is None:
            return cls.CLASSES

        if isinstance(classes, str):
            # take it as a file path
            class_names = mmcv.list_from_file(classes)
        elif isinstance(classes, (tuple, list)):
            class_names = classes
        else:
            raise ValueError(f'Unsupported type {type(classes)} of classes.')

        return class_names

liyinhao's avatar
liyinhao committed
106
107
108
109
110
111
112
113
114
115
    def format_results(self,
                       outputs,
                       pklfile_prefix=None,
                       submission_prefix=None):
        if pklfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(tmp_dir.name, 'results')
            out = f'{pklfile_prefix}.pkl'
        mmcv.dump(outputs, out)
        return outputs, tmp_dir
116
117
118
119
120
121
122

    def evaluate(self, results, metric=None):
        """Evaluate.

        Evaluation in indoor protocol.

        Args:
liyinhao's avatar
liyinhao committed
123
            results (list[dict]): List of results.
liyinhao's avatar
liyinhao committed
124
            metric (list[float]): AP IoU thresholds.
125
126
        """
        from mmdet3d.core.evaluation import indoor_eval
liyinhao's avatar
liyinhao committed
127
128
129
130
131
132
133
        assert isinstance(
            results, list), f'Expect results to be list, got {type(results)}.'
        assert len(results) > 0, f'Expect length of results > 0.'
        assert isinstance(
            results[0], dict
        ), f'Expect elements in results to be dict, got {type(results[0])}.'
        assert len(metric) > 0, f'Expect length of metric > 0.'
134
        gt_annos = [info['annos'] for info in self.data_infos]
zhangwenwei's avatar
zhangwenwei committed
135
136
        label2cat = {i: cat_id for i, cat_id in enumerate(self.CLASSES)}
        ret_dict = indoor_eval(gt_annos, results, metric, label2cat)
liyinhao's avatar
liyinhao committed
137
        return ret_dict
zhangwenwei's avatar
zhangwenwei committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

    def __len__(self):
        return len(self.data_infos)

    def _rand_another(self, idx):
        pool = np.where(self.flag == self.flag[idx])[0]
        return np.random.choice(pool)

    def __getitem__(self, idx):
        if self.test_mode:
            return self.prepare_test_data(idx)
        while True:
            data = self.prepare_train_data(idx)
            if data is None:
                idx = self._rand_another(idx)
                continue
            return data

    def _set_group_flag(self):
        """Set flag according to image aspect ratio.

        Images with aspect ratio greater than 1 will be set as group 1,
        otherwise group 0.
        In 3D datasets, they are all the same, thus are all zeros

        """
        self.flag = np.zeros(len(self), dtype=np.uint8)