gaussian.py 2.51 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
4
5
6
7
8
9
10
import numpy as np
import torch


def gaussian_2d(shape, sigma=1):
    """Generate gaussian map.

    Args:
        shape (list[int]): Shape of the map.
11
        sigma (float, optional): Sigma to generate gaussian map.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
            Defaults to 1.

    Returns:
        np.ndarray: Generated gaussian map.
    """
    m, n = [(ss - 1.) / 2. for ss in shape]
    y, x = np.ogrid[-m:m + 1, -n:n + 1]

    h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
    h[h < np.finfo(h.dtype).eps * h.max()] = 0
    return h


def draw_heatmap_gaussian(heatmap, center, radius, k=1):
    """Get gaussian masked heatmap.

    Args:
        heatmap (torch.Tensor): Heatmap to be masked.
        center (torch.Tensor): Center coord of the heatmap.
31
        radius (int): Radius of gaussian.
32
        K (int, optional): Multiple of masked_gaussian. Defaults to 1.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

    Returns:
        torch.Tensor: Masked heatmap.
    """
    diameter = 2 * radius + 1
    gaussian = gaussian_2d((diameter, diameter), sigma=diameter / 6)

    x, y = int(center[0]), int(center[1])

    height, width = heatmap.shape[0:2]

    left, right = min(x, radius), min(width - x, radius + 1)
    top, bottom = min(y, radius), min(height - y, radius + 1)

    masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right]
    masked_gaussian = torch.from_numpy(
        gaussian[radius - top:radius + bottom,
                 radius - left:radius + right]).to(heatmap.device,
                                                   torch.float32)
    if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0:
        torch.max(masked_heatmap, masked_gaussian * k, out=masked_heatmap)
    return heatmap


def gaussian_radius(det_size, min_overlap=0.5):
    """Get radius of gaussian.

    Args:
        det_size (tuple[torch.Tensor]): Size of the detection result.
62
        min_overlap (float, optional): Gaussian_overlap. Defaults to 0.5.
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

    Returns:
        torch.Tensor: Computed radius.
    """
    height, width = det_size

    a1 = 1
    b1 = (height + width)
    c1 = width * height * (1 - min_overlap) / (1 + min_overlap)
    sq1 = torch.sqrt(b1**2 - 4 * a1 * c1)
    r1 = (b1 + sq1) / 2

    a2 = 4
    b2 = 2 * (height + width)
    c2 = (1 - min_overlap) * width * height
    sq2 = torch.sqrt(b2**2 - 4 * a2 * c2)
    r2 = (b2 + sq2) / 2

    a3 = 4 * min_overlap
    b3 = -2 * min_overlap * (height + width)
    c3 = (min_overlap - 1) * width * height
    sq3 = torch.sqrt(b3**2 - 4 * a3 * c3)
    r3 = (b3 + sq3) / 2
    return min(r1, r2, r3)