formating.py 8.13 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangshilong's avatar
zhangshilong committed
2
from typing import List, Sequence, Union
jshilong's avatar
jshilong committed
3

4
import mmengine
zhangwenwei's avatar
zhangwenwei committed
5
import numpy as np
zhangshilong's avatar
zhangshilong committed
6
import torch
jshilong's avatar
jshilong committed
7
from mmcv import BaseTransform
8
from mmengine.structures import InstanceData
zhangshilong's avatar
zhangshilong committed
9
from numpy import dtype
zhangwenwei's avatar
zhangwenwei committed
10

11
from mmdet3d.registry import TRANSFORMS
zhangshilong's avatar
zhangshilong committed
12
13
from mmdet3d.structures import BaseInstance3DBoxes, Det3DDataSample, PointData
from mmdet3d.structures.points import BasePoints
zhangwenwei's avatar
zhangwenwei committed
14
15


zhangshilong's avatar
zhangshilong committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
def to_tensor(
    data: Union[torch.Tensor, np.ndarray, Sequence, int,
                float]) -> torch.Tensor:
    """Convert objects of various python types to :obj:`torch.Tensor`.

    Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
    :class:`Sequence`, :class:`int` and :class:`float`.

    Args:
        data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to
            be converted.

    Returns:
        torch.Tensor: the converted data.
    """

    if isinstance(data, torch.Tensor):
        return data
    elif isinstance(data, np.ndarray):
        if data.dtype is dtype('float64'):
            data = data.astype(np.float32)
        return torch.from_numpy(data)
38
    elif isinstance(data, Sequence) and not mmengine.is_str(data):
zhangshilong's avatar
zhangshilong committed
39
40
41
42
43
44
45
46
47
        return torch.tensor(data)
    elif isinstance(data, int):
        return torch.LongTensor([data])
    elif isinstance(data, float):
        return torch.FloatTensor([data])
    else:
        raise TypeError(f'type {type(data)} cannot be converted to tensor.')


48
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
49
50
51
52
53
54
55
class Pack3DDetInputs(BaseTransform):
    INPUTS_KEYS = ['points', 'img']
    INSTANCEDATA_3D_KEYS = [
        'gt_bboxes_3d', 'gt_labels_3d', 'attr_labels', 'depths', 'centers_2d'
    ]
    INSTANCEDATA_2D_KEYS = [
        'gt_bboxes',
zhangshilong's avatar
zhangshilong committed
56
        'gt_bboxes_labels',
jshilong's avatar
jshilong committed
57
58
59
60
61
62
    ]

    SEG_KEYS = [
        'gt_seg_map', 'pts_instance_mask', 'pts_semantic_mask',
        'gt_semantic_seg'
    ]
zhangwenwei's avatar
zhangwenwei committed
63

jshilong's avatar
jshilong committed
64
65
    def __init__(
        self,
66
67
68
69
70
71
72
73
74
        keys: tuple,
        meta_keys: tuple = ('img_path', 'ori_shape', 'img_shape', 'lidar2img',
                            'depth2img', 'cam2img', 'pad_shape',
                            'scale_factor', 'flip', 'pcd_horizontal_flip',
                            'pcd_vertical_flip', 'box_mode_3d', 'box_type_3d',
                            'img_norm_cfg', 'num_pts_feats', 'pcd_trans',
                            'sample_idx', 'pcd_scale_factor', 'pcd_rotation',
                            'pcd_rotation_angle', 'lidar_path',
                            'transformation_3d_flow', 'trans_mat',
75
76
                            'affine_aug')
    ) -> None:
jshilong's avatar
jshilong committed
77
78
        self.keys = keys
        self.meta_keys = meta_keys
zhangwenwei's avatar
zhangwenwei committed
79

jshilong's avatar
jshilong committed
80
81
82
83
    def _remove_prefix(self, key: str) -> str:
        if key.startswith('gt_'):
            key = key[3:]
        return key
zhangwenwei's avatar
zhangwenwei committed
84

jshilong's avatar
jshilong committed
85
86
87
88
    def transform(self, results: Union[dict,
                                       List[dict]]) -> Union[dict, List[dict]]:
        """Method to pack the input data. when the value in this dict is a
        list, it usually is in Augmentations Testing.
89
90

        Args:
jshilong's avatar
jshilong committed
91
            results (dict | list[dict]): Result dict from the data pipeline.
92
93

        Returns:
jshilong's avatar
jshilong committed
94
            dict | List[dict]:
jshilong's avatar
jshilong committed
95
96
97
98
99
100
101

            - 'inputs' (dict): The forward data of models. It usually contains
              following keys:

                - points
                - img

102
            - 'data_samples' (obj:`Det3DDataSample`): The annotation info of
103
              the sample.
104
        """
jshilong's avatar
jshilong committed
105
106
        # augtest
        if isinstance(results, list):
107
108
109
            if len(results) == 1:
                # simple test
                return self.pack_single_results(results[0])
jshilong's avatar
jshilong committed
110
111
112
113
114
115
116
117
118
119
            pack_results = []
            for single_result in results:
                pack_results.append(self.pack_single_results(single_result))
            return pack_results
        # norm training and simple testing
        elif isinstance(results, dict):
            return self.pack_single_results(results)
        else:
            raise NotImplementedError

120
    def pack_single_results(self, results: dict) -> dict:
jshilong's avatar
jshilong committed
121
122
123
124
125
126
127
128
        """Method to pack the single input data. when the value in this dict is
        a list, it usually is in Augmentations Testing.

        Args:
            results (dict): Result dict from the data pipeline.

        Returns:
            dict: A dict contains
jshilong's avatar
jshilong committed
129

jshilong's avatar
jshilong committed
130
131
132
133
134
135
            - 'inputs' (dict): The forward data of models. It usually contains
              following keys:

                - points
                - img

136
            - 'data_samples' (:obj:`Det3DDataSample`): The annotation info
137
              of the sample.
jshilong's avatar
jshilong committed
138
        """
jshilong's avatar
jshilong committed
139
140
        # Format 3D data
        if 'points' in results:
jshilong's avatar
jshilong committed
141
142
            if isinstance(results['points'], BasePoints):
                results['points'] = results['points'].tensor
jshilong's avatar
jshilong committed
143

zhangwenwei's avatar
zhangwenwei committed
144
145
146
147
148
        if 'img' in results:
            if isinstance(results['img'], list):
                # process multiple imgs in single frame
                imgs = [img.transpose(2, 0, 1) for img in results['img']]
                imgs = np.ascontiguousarray(np.stack(imgs, axis=0))
jshilong's avatar
jshilong committed
149
                results['img'] = to_tensor(imgs)
zhangwenwei's avatar
zhangwenwei committed
150
            else:
jshilong's avatar
jshilong committed
151
152
153
                img = results['img']
                if len(img.shape) < 3:
                    img = np.expand_dims(img, -1)
154
155
                results['img'] = to_tensor(
                    np.ascontiguousarray(img.transpose(2, 0, 1)))
jshilong's avatar
jshilong committed
156

zhangwenwei's avatar
zhangwenwei committed
157
        for key in [
158
                'proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels',
zhangshilong's avatar
zhangshilong committed
159
160
                'gt_bboxes_labels', 'attr_labels', 'pts_instance_mask',
                'pts_semantic_mask', 'centers_2d', 'depths', 'gt_labels_3d'
zhangwenwei's avatar
zhangwenwei committed
161
162
163
164
        ]:
            if key not in results:
                continue
            if isinstance(results[key], list):
jshilong's avatar
jshilong committed
165
                results[key] = [to_tensor(res) for res in results[key]]
zhangwenwei's avatar
zhangwenwei committed
166
            else:
jshilong's avatar
jshilong committed
167
                results[key] = to_tensor(results[key])
168
        if 'gt_bboxes_3d' in results:
jshilong's avatar
jshilong committed
169
170
            if not isinstance(results['gt_bboxes_3d'], BaseInstance3DBoxes):
                results['gt_bboxes_3d'] = to_tensor(results['gt_bboxes_3d'])
171

zhangwenwei's avatar
zhangwenwei committed
172
        if 'gt_semantic_seg' in results:
jshilong's avatar
jshilong committed
173
174
175
176
            results['gt_semantic_seg'] = to_tensor(
                results['gt_semantic_seg'][None])
        if 'gt_seg_map' in results:
            results['gt_seg_map'] = results['gt_seg_map'][None, ...]
wangtai's avatar
wangtai committed
177

jshilong's avatar
jshilong committed
178
179
180
        data_sample = Det3DDataSample()
        gt_instances_3d = InstanceData()
        gt_instances = InstanceData()
ZCMax's avatar
ZCMax committed
181
        gt_pts_seg = PointData()
zhangwenwei's avatar
zhangwenwei committed
182

zhangwenwei's avatar
zhangwenwei committed
183
        img_metas = {}
zhangwenwei's avatar
zhangwenwei committed
184
185
        for key in self.meta_keys:
            if key in results:
zhangwenwei's avatar
zhangwenwei committed
186
                img_metas[key] = results[key]
jshilong's avatar
jshilong committed
187
        data_sample.set_metainfo(img_metas)
188

jshilong's avatar
jshilong committed
189
        inputs = {}
zhangwenwei's avatar
zhangwenwei committed
190
        for key in self.keys:
jshilong's avatar
jshilong committed
191
192
193
194
195
196
            if key in results:
                if key in self.INPUTS_KEYS:
                    inputs[key] = results[key]
                elif key in self.INSTANCEDATA_3D_KEYS:
                    gt_instances_3d[self._remove_prefix(key)] = results[key]
                elif key in self.INSTANCEDATA_2D_KEYS:
zhangshilong's avatar
zhangshilong committed
197
198
199
200
                    if key == 'gt_bboxes_labels':
                        gt_instances['labels'] = results[key]
                    else:
                        gt_instances[self._remove_prefix(key)] = results[key]
jshilong's avatar
jshilong committed
201
                elif key in self.SEG_KEYS:
ZCMax's avatar
ZCMax committed
202
                    gt_pts_seg[self._remove_prefix(key)] = results[key]
jshilong's avatar
jshilong committed
203
204
205
206
207
208
209
210
                else:
                    raise NotImplementedError(f'Please modified '
                                              f'`Pack3DDetInputs` '
                                              f'to put {key} to '
                                              f'corresponding field')

        data_sample.gt_instances_3d = gt_instances_3d
        data_sample.gt_instances = gt_instances
ZCMax's avatar
ZCMax committed
211
        data_sample.gt_pts_seg = gt_pts_seg
jshilong's avatar
jshilong committed
212
213
214
215
216
217
        if 'eval_ann_info' in results:
            data_sample.eval_ann_info = results['eval_ann_info']
        else:
            data_sample.eval_ann_info = None

        packed_results = dict()
218
        packed_results['data_samples'] = data_sample
jshilong's avatar
jshilong committed
219
220
221
222
223
        packed_results['inputs'] = inputs

        return packed_results

    def __repr__(self) -> str:
224
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
225
        repr_str = self.__class__.__name__
jshilong's avatar
jshilong committed
226
227
        repr_str += f'(keys={self.keys})'
        repr_str += f'(meta_keys={self.meta_keys})'
zhangwenwei's avatar
zhangwenwei committed
228
        return repr_str