kitti2d_dataset.py 8.5 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
import mmcv
import numpy as np

from mmdet.datasets import DATASETS, CustomDataset


7
@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
8
class Kitti2DDataset(CustomDataset):
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
    r"""KITTI 2D Dataset.

    This class serves as the API for experiments on the `KITTI Dataset
    <http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d>`_.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'LiDAR'. Available options includes

            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
zhangwenwei's avatar
zhangwenwei committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

    CLASSES = ('car', 'pedestrian', 'cyclist')
    """
    Annotation format:
    [
        {
            'image': {
                'image_idx': 0,
                'image_path': 'training/image_2/000000.png',
                'image_shape': array([ 370, 1224], dtype=int32)
            },
            'point_cloud': {
                 'num_features': 4,
                 'velodyne_path': 'training/velodyne/000000.bin'
             },
             'calib': {
                 'P0': <np.ndarray> (4, 4),
                 'P1': <np.ndarray> (4, 4),
                 'P2': <np.ndarray> (4, 4),
                 'P3': <np.ndarray> (4, 4),
                 'R0_rect':4x4 np.array,
                 'Tr_velo_to_cam': 4x4 np.array,
                 'Tr_imu_to_velo': 4x4 np.array
             },
             'annos': {
                 'name': <np.ndarray> (n),
                 'truncated': <np.ndarray> (n),
                 'occluded': <np.ndarray> (n),
                 'alpha': <np.ndarray> (n),
                 'bbox': <np.ndarray> (n, 4),
                 'dimensions': <np.ndarray> (n, 3),
                 'location': <np.ndarray> (n, 3),
                 'rotation_y': <np.ndarray> (n),
                 'score': <np.ndarray> (n),
                 'index': array([0], dtype=int32),
                 'group_ids': array([0], dtype=int32),
                 'difficulty': array([0], dtype=int32),
                 'num_points_in_gt': <np.ndarray> (n),
             }
        }
    ]
    """

    def load_annotations(self, ann_file):
80
81
82
83
84
85
86
87
        """Load annotations from ann_file.

        Args:
            ann_file (str): Path of the annotation file.

        Returns:
            list[dict]: List of annotations.
        """
zhangwenwei's avatar
zhangwenwei committed
88
89
90
        self.data_infos = mmcv.load(ann_file)
        self.cat2label = {
            cat_name: i
91
            for i, cat_name in enumerate(self.CLASSES)
zhangwenwei's avatar
zhangwenwei committed
92
93
94
95
96
97
98
99
100
101
102
103
        }
        return self.data_infos

    def _filter_imgs(self, min_size=32):
        """Filter images without ground truths."""
        valid_inds = []
        for i, img_info in enumerate(self.data_infos):
            if len(img_info['annos']['name']) > 0:
                valid_inds.append(i)
        return valid_inds

    def get_ann_info(self, index):
104
105
106
107
108
109
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
wangtai's avatar
wangtai committed
110
            dict: Annotation information consists of the following keys:
111

wangtai's avatar
wangtai committed
112
113
                - bboxes (np.ndarray): Ground truth bboxes.
                - labels (np.ndarray): Labels of ground truths.
114
        """
zhangwenwei's avatar
zhangwenwei committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.data_infos[index]
        annos = info['annos']
        gt_names = annos['name']
        gt_bboxes = annos['bbox']
        difficulty = annos['difficulty']

        # remove classes that is not needed
        selected = self.keep_arrays_by_name(gt_names, self.CLASSES)
        gt_bboxes = gt_bboxes[selected]
        gt_names = gt_names[selected]
        difficulty = difficulty[selected]
        gt_labels = np.array([self.cat2label[n] for n in gt_names])

        anns_results = dict(
            bboxes=gt_bboxes.astype(np.float32),
            labels=gt_labels,
        )
        return anns_results

    def prepare_train_img(self, idx):
136
137
138
139
140
141
142
143
144
        """Training image preparation.

        Args:
            index (int): Index for accessing the target image data.

        Returns:
            dict: Training image data dict after preprocessing
                corresponding to the index.
        """
zhangwenwei's avatar
zhangwenwei committed
145
146
147
148
149
150
151
152
153
154
155
156
        img_raw_info = self.data_infos[idx]['image']
        img_info = dict(filename=img_raw_info['image_path'])
        ann_info = self.get_ann_info(idx)
        if len(ann_info['bboxes']) == 0:
            return None
        results = dict(img_info=img_info, ann_info=ann_info)
        if self.proposals is not None:
            results['proposals'] = self.proposals[idx]
        self.pre_pipeline(results)
        return self.pipeline(results)

    def prepare_test_img(self, idx):
157
158
159
160
161
162
163
164
165
        """Prepare data for testing.

        Args:
            index (int): Index for accessing the target image data.

        Returns:
            dict: Testing image data dict after preprocessing
                corresponding to the index.
        """
zhangwenwei's avatar
zhangwenwei committed
166
167
168
169
170
171
172
173
174
        img_raw_info = self.data_infos[idx]['image']
        img_info = dict(filename=img_raw_info['image_path'])
        results = dict(img_info=img_info)
        if self.proposals is not None:
            results['proposals'] = self.proposals[idx]
        self.pre_pipeline(results)
        return self.pipeline(results)

    def drop_arrays_by_name(self, gt_names, used_classes):
175
176
177
178
179
180
181
182
183
        """Drop irrelevant ground truths by name.

        Args:
            gt_names (list[str]): Names of ground truths.
            used_classes (list[str]): Classes of interest.

        Returns:
            np.ndarray: Indices of ground truths that will be dropped.
        """
zhangwenwei's avatar
zhangwenwei committed
184
185
186
187
188
        inds = [i for i, x in enumerate(gt_names) if x not in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

    def keep_arrays_by_name(self, gt_names, used_classes):
189
190
191
192
193
194
195
196
197
        """Keep useful ground truths by name.

        Args:
            gt_names (list[str]): Names of ground truths.
            used_classes (list[str]): Classes of interest.

        Returns:
            np.ndarray: Indices of ground truths that will be keeped.
        """
zhangwenwei's avatar
zhangwenwei committed
198
199
200
201
202
        inds = [i for i, x in enumerate(gt_names) if x in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

    def reformat_bbox(self, outputs, out=None):
203
204
205
206
207
208
209
210
211
212
        """Reformat bounding boxes to KITTI 2D styles.

        Args:
            outputs (list[np.ndarray]): List of arrays storing the inferenced
                bounding boxes and scores.
            out (str | None): The prefix of output file. Default: None.

        Returns:
            list[dict]: A list of dictionaries with the kitti 2D format.
        """
zhangwenwei's avatar
zhangwenwei committed
213
214
215
216
217
218
219
        from mmdet3d.core.bbox.transforms import bbox2result_kitti2d
        sample_idx = [info['image']['image_idx'] for info in self.data_infos]
        result_files = bbox2result_kitti2d(outputs, self.CLASSES, sample_idx,
                                           out)
        return result_files

    def evaluate(self, result_files, eval_types=None):
220
221
222
223
224
225
226
227
228
229
230
        """Evaluation in KITTI protocol.

        Args:
            result_files (str): Path of result files.
            eval_types (str): Types of evaluation. Default: None.
                KITTI dataset only support 'bbox' evaluation type.

        Returns:
            tuple (str, dict): Average precision results in str format
                and average precision results in dict format.
        """
zhangwenwei's avatar
zhangwenwei committed
231
232
233
234
235
236
237
238
        from mmdet3d.core.evaluation import kitti_eval
        eval_types = ['bbox'] if not eval_types else eval_types
        assert eval_types in ('bbox', ['bbox'
                                       ]), 'KITTI data set only evaluate bbox'
        gt_annos = [info['annos'] for info in self.data_infos]
        ap_result_str, ap_dict = kitti_eval(
            gt_annos, result_files, self.CLASSES, eval_types=['bbox'])
        return ap_result_str, ap_dict