cylinder3d.py 16.3 KB
Newer Older
1
2
3
4
5
6
7
# Copyright (c) OpenMMLab. All rights reserved.
r"""Modified from Cylinder3D.

Please refer to `Cylinder3D github page
<https://github.com/xinge008/Cylinder3D>`_ for details
"""

xizaoqu's avatar
xizaoqu committed
8
from typing import List, Optional
9
10
11

import numpy as np
import torch
xizaoqu's avatar
xizaoqu committed
12
13
14
from mmcv.cnn import build_activation_layer, build_norm_layer
from mmcv.ops import (SparseConv3d, SparseConvTensor, SparseInverseConv3d,
                      SubMConv3d)
15
16
17
18
19
20
from mmengine.model import BaseModule

from mmdet3d.registry import MODELS
from mmdet3d.utils import ConfigType


xizaoqu's avatar
xizaoqu committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
class AsymmResBlock(BaseModule):
    """Asymmetrical Residual Block.

    Args:
        in_channels (int): Input channels of the block.
        out_channels (int): Output channels of the block.
        norm_cfg (:obj:`ConfigDict` or dict): Config dict for
            normalization layer.
        act_cfg (:obj:`ConfigDict` or dict): Config dict of activation layers.
            Defaults to dict(type='LeakyReLU').
        indice_key (str, optional): Name of indice tables. Defaults to None.
    """

    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 norm_cfg: ConfigType,
                 act_cfg: ConfigType = dict(type='LeakyReLU'),
                 indice_key: Optional[str] = None):
        super().__init__()

        self.conv0_0 = SubMConv3d(
            in_channels,
            out_channels,
            kernel_size=(1, 3, 3),
            padding=1,
            bias=False,
            indice_key=indice_key + 'bef')
        self.act0_0 = build_activation_layer(act_cfg)
        self.bn0_0 = build_norm_layer(norm_cfg, out_channels)[1]

        self.conv0_1 = SubMConv3d(
            out_channels,
            out_channels,
            kernel_size=(3, 1, 3),
            padding=1,
            bias=False,
            indice_key=indice_key + 'bef')
        self.act0_1 = build_activation_layer(act_cfg)
        self.bn0_1 = build_norm_layer(norm_cfg, out_channels)[1]

        self.conv1_0 = SubMConv3d(
            in_channels,
            out_channels,
            kernel_size=(3, 1, 3),
            padding=1,
            bias=False,
            indice_key=indice_key + 'bef')
        self.act1_0 = build_activation_layer(act_cfg)
        self.bn1_0 = build_norm_layer(norm_cfg, out_channels)[1]

        self.conv1_1 = SubMConv3d(
            out_channels,
            out_channels,
            kernel_size=(1, 3, 3),
            padding=1,
            bias=False,
            indice_key=indice_key + 'bef')
        self.act1_1 = build_activation_layer(act_cfg)
        self.bn1_1 = build_norm_layer(norm_cfg, out_channels)[1]

    def forward(self, x: SparseConvTensor) -> SparseConvTensor:
        """Forward pass."""
        shortcut = self.conv0_0(x)

        shortcut.features = self.act0_0(shortcut.features)
        shortcut.features = self.bn0_0(shortcut.features)

        shortcut = self.conv0_1(shortcut)
        shortcut.features = self.act0_1(shortcut.features)
        shortcut.features = self.bn0_1(shortcut.features)

        res = self.conv1_0(x)
        res.features = self.act1_0(res.features)
        res.features = self.bn1_0(res.features)

        res = self.conv1_1(res)
        res.features = self.act1_1(res.features)
        res.features = self.bn1_1(res.features)

        res.features = res.features + shortcut.features

        return res


class AsymmeDownBlock(BaseModule):
    """Asymmetrical DownSample Block.

    Args:
       in_channels (int): Input channels of the block.
       out_channels (int): Output channels of the block.
       norm_cfg (:obj:`ConfigDict` or dict): Config dict for
            normalization layer.
       act_cfg (:obj:`ConfigDict` or dict): Config dict of activation layers.
            Defaults to dict(type='LeakyReLU').
       pooling (bool): Whether pooling features at the end of
           block. Defaults: True.
       height_pooling (bool): Whether pooling features at
           the height dimension. Defaults: False.
       indice_key (str, optional): Name of indice tables. Defaults to None.
    """

    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 norm_cfg: ConfigType,
                 act_cfg: ConfigType = dict(type='LeakyReLU'),
                 pooling: bool = True,
                 height_pooling: bool = False,
                 indice_key: Optional[str] = None):
        super().__init__()
        self.pooling = pooling

        self.conv0_0 = SubMConv3d(
            in_channels,
            out_channels,
            kernel_size=(3, 1, 3),
            padding=1,
            bias=False,
            indice_key=indice_key + 'bef')
        self.act0_0 = build_activation_layer(act_cfg)
        self.bn0_0 = build_norm_layer(norm_cfg, out_channels)[1]

        self.conv0_1 = SubMConv3d(
            out_channels,
            out_channels,
            kernel_size=(1, 3, 3),
            padding=1,
            bias=False,
            indice_key=indice_key + 'bef')
        self.act0_1 = build_activation_layer(act_cfg)
        self.bn0_1 = build_norm_layer(norm_cfg, out_channels)[1]

        self.conv1_0 = SubMConv3d(
            in_channels,
            out_channels,
            kernel_size=(1, 3, 3),
            padding=1,
            bias=False,
            indice_key=indice_key + 'bef')
        self.act1_0 = build_activation_layer(act_cfg)
        self.bn1_0 = build_norm_layer(norm_cfg, out_channels)[1]

        self.conv1_1 = SubMConv3d(
            out_channels,
            out_channels,
            kernel_size=(3, 1, 3),
            padding=1,
            bias=False,
            indice_key=indice_key + 'bef')
        self.act1_1 = build_activation_layer(act_cfg)
        self.bn1_1 = build_norm_layer(norm_cfg, out_channels)[1]

        if pooling:
            if height_pooling:
                self.pool = SparseConv3d(
                    out_channels,
                    out_channels,
                    kernel_size=3,
                    stride=2,
                    padding=1,
                    indice_key=indice_key,
                    bias=False)
            else:
                self.pool = SparseConv3d(
                    out_channels,
                    out_channels,
                    kernel_size=3,
                    stride=(2, 2, 1),
                    padding=1,
                    indice_key=indice_key,
                    bias=False)

    def forward(self, x: SparseConvTensor) -> SparseConvTensor:
        """Forward pass."""
        shortcut = self.conv0_0(x)
        shortcut.features = self.act0_0(shortcut.features)
        shortcut.features = self.bn0_0(shortcut.features)

        shortcut = self.conv0_1(shortcut)
        shortcut.features = self.act0_1(shortcut.features)
        shortcut.features = self.bn0_1(shortcut.features)

        res = self.conv1_0(x)
        res.features = self.act1_0(res.features)
        res.features = self.bn1_0(res.features)

        res = self.conv1_1(res)
        res.features = self.act1_1(res.features)
        res.features = self.bn1_1(res.features)

        res.features = res.features + shortcut.features

        if self.pooling:
            pooled_res = self.pool(res)
            return pooled_res, res
        else:
            return res


class AsymmeUpBlock(BaseModule):
    """Asymmetrical UpSample Block.

    Args:
        in_channels (int): Input channels of the block.
        out_channels (int): Output channels of the block.
        norm_cfg (:obj:`ConfigDict` or dict): Config dict for
                normalization layer.
        act_cfg (:obj:`ConfigDict` or dict): Config dict of activation layers.
                Defaults to dict(type='LeakyReLU').
        indice_key (str, optional): Name of indice tables. Defaults to None.
        up_key (str, optional): Name of indice tables used in
            SparseInverseConv3d. Defaults to None.
    """

    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 norm_cfg: ConfigType,
                 act_cfg: ConfigType = dict(type='LeakyReLU'),
                 indice_key: Optional[str] = None,
                 up_key: Optional[str] = None):
        super().__init__()

        self.trans_conv = SubMConv3d(
            in_channels,
            out_channels,
            kernel_size=(3, 3, 3),
            padding=1,
            bias=False,
            indice_key=indice_key + 'new_up')
        self.trans_act = build_activation_layer(act_cfg)
        self.trans_bn = build_norm_layer(norm_cfg, out_channels)[1]

        self.conv1 = SubMConv3d(
            out_channels,
            out_channels,
            kernel_size=(1, 3, 3),
            padding=1,
            bias=False,
            indice_key=indice_key)
        self.act1 = build_activation_layer(act_cfg)
        self.bn1 = build_norm_layer(norm_cfg, out_channels)[1]

        self.conv2 = SubMConv3d(
            out_channels,
            out_channels,
            kernel_size=(3, 1, 3),
            padding=1,
            bias=False,
            indice_key=indice_key)
        self.act2 = build_activation_layer(act_cfg)
        self.bn2 = build_norm_layer(norm_cfg, out_channels)[1]

        self.conv3 = SubMConv3d(
            out_channels,
            out_channels,
            kernel_size=(3, 3, 3),
            padding=1,
            bias=False,
            indice_key=indice_key)
        self.act3 = build_activation_layer(act_cfg)
        self.bn3 = build_norm_layer(norm_cfg, out_channels)[1]

        self.up_subm = SparseInverseConv3d(
            out_channels,
            out_channels,
            kernel_size=3,
            indice_key=up_key,
            bias=False)

    def forward(self, x: SparseConvTensor,
                skip: SparseConvTensor) -> SparseConvTensor:
        """Forward pass."""
        x_trans = self.trans_conv(x)
        x_trans.features = self.trans_act(x_trans.features)
        x_trans.features = self.trans_bn(x_trans.features)

        # upsample
        up = self.up_subm(x_trans)

        up.features = up.features + skip.features

        up = self.conv1(up)
        up.features = self.act1(up.features)
        up.features = self.bn1(up.features)

        up = self.conv2(up)
        up.features = self.act2(up.features)
        up.features = self.bn2(up.features)

        up = self.conv3(up)
        up.features = self.act3(up.features)
        up.features = self.bn3(up.features)

        return up


class DDCMBlock(BaseModule):
    """Dimension-Decomposition based Context Modeling.

    Args:
        in_channels (int): Input channels of the block.
        out_channels (int): Output channels of the block.
        norm_cfg (:obj:`ConfigDict` or dict): Config dict for
            normalization layer.
        act_cfg (:obj:`ConfigDict` or dict): Config dict of activation layers.
            Defaults to dict(type='Sigmoid').
        indice_key (str, optional): Name of indice tables. Defaults to None.
    """

    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 norm_cfg: ConfigType,
                 act_cfg: ConfigType = dict(type='Sigmoid'),
                 indice_key: Optional[str] = None):
        super().__init__()

        self.conv1 = SubMConv3d(
            in_channels,
            out_channels,
            kernel_size=(3, 1, 1),
            padding=1,
            bias=False,
            indice_key=indice_key)
        self.bn1 = build_norm_layer(norm_cfg, out_channels)[1]
        self.act1 = build_activation_layer(act_cfg)

        self.conv2 = SubMConv3d(
            in_channels,
            out_channels,
            kernel_size=(1, 3, 1),
            padding=1,
            bias=False,
            indice_key=indice_key)
        self.bn2 = build_norm_layer(norm_cfg, out_channels)[1]
        self.act2 = build_activation_layer(act_cfg)

        self.conv3 = SubMConv3d(
            in_channels,
            out_channels,
            kernel_size=(1, 1, 3),
            padding=1,
            bias=False,
            indice_key=indice_key)
        self.bn3 = build_norm_layer(norm_cfg, out_channels)[1]
        self.act3 = build_activation_layer(act_cfg)

    def forward(self, x: SparseConvTensor) -> SparseConvTensor:
        """Forward pass."""
        shortcut = self.conv1(x)
        shortcut.features = self.bn1(shortcut.features)
        shortcut.features = self.act1(shortcut.features)

        shortcut2 = self.conv2(x)
        shortcut2.features = self.bn2(shortcut2.features)
        shortcut2.features = self.act2(shortcut2.features)

        shortcut3 = self.conv3(x)
        shortcut3.features = self.bn3(shortcut3.features)
        shortcut3.features = self.act3(shortcut3.features)
        shortcut.features = shortcut.features + \
            shortcut2.features + shortcut3.features

        shortcut.features = shortcut.features * x.features

        return shortcut


391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
@MODELS.register_module()
class Asymm3DSpconv(BaseModule):
    """Asymmetrical 3D convolution networks.

    Args:
        grid_size (int): Size of voxel grids.
        input_channels (int): Input channels of the block.
        base_channels (int): Initial size of feature channels before
            feeding into Encoder-Decoder structure. Defaults to 16.
        backbone_depth (int): The depth of backbone. The backbone contains
            downblocks and upblocks with the number of backbone_depth.
        height_pooing (List[bool]): List indicating which downblocks perform
            height pooling.
        norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
            layer. Defaults to dict(type='BN1d', eps=1e-3, momentum=0.01)).
        init_cfg (dict, optional): Initialization config.
            Defaults to None.
    """

    def __init__(self,
                 grid_size: int,
                 input_channels: int,
                 base_channels: int = 16,
                 backbone_depth: int = 4,
                 height_pooing: List[bool] = [True, True, False, False],
                 norm_cfg: ConfigType = dict(
                     type='BN1d', eps=1e-3, momentum=0.01),
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)

        self.grid_size = grid_size
        self.backbone_depth = backbone_depth
        self.down_context = AsymmResBlock(
            input_channels, base_channels, indice_key='pre', norm_cfg=norm_cfg)

        self.down_block_list = torch.nn.ModuleList()
        self.up_block_list = torch.nn.ModuleList()
        for i in range(self.backbone_depth):
            self.down_block_list.append(
                AsymmeDownBlock(
                    2**i * base_channels,
                    2**(i + 1) * base_channels,
                    height_pooling=height_pooing[i],
                    indice_key='down' + str(i),
                    norm_cfg=norm_cfg))
            if i == self.backbone_depth - 1:
                self.up_block_list.append(
                    AsymmeUpBlock(
                        2**(i + 1) * base_channels,
                        2**(i + 1) * base_channels,
                        up_key='down' + str(i),
                        indice_key='up' + str(self.backbone_depth - 1 - i),
                        norm_cfg=norm_cfg))
            else:
                self.up_block_list.append(
                    AsymmeUpBlock(
                        2**(i + 2) * base_channels,
                        2**(i + 1) * base_channels,
                        up_key='down' + str(i),
                        indice_key='up' + str(self.backbone_depth - 1 - i),
                        norm_cfg=norm_cfg))

        self.ddcm = DDCMBlock(
            2 * base_channels,
            2 * base_channels,
            indice_key='ddcm',
            norm_cfg=norm_cfg)

    def forward(self, voxel_features: torch.Tensor, coors: torch.Tensor,
                batch_size: int) -> SparseConvTensor:
        """Forward pass."""
        coors = coors.int()
        ret = SparseConvTensor(voxel_features, coors, np.array(self.grid_size),
                               batch_size)
        ret = self.down_context(ret)

        down_skip_list = []
        down_pool = ret
        for i in range(self.backbone_depth):
            down_pool, down_skip = self.down_block_list[i](down_pool)
            down_skip_list.append(down_skip)

        up = down_pool
        for i in range(self.backbone_depth - 1, -1, -1):
            up = self.up_block_list[i](up, down_skip_list[i])

        ddcm = self.ddcm(up)
        ddcm.features = torch.cat((ddcm.features, up.features), 1)

        return ddcm