sunrgbd_dataset.py 4.59 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
2
from os import path as osp
liyinhao's avatar
liyinhao committed
3

liyinhao's avatar
liyinhao committed
4
from mmdet3d.core import show_result
wuyuefeng's avatar
wuyuefeng committed
5
from mmdet3d.core.bbox import DepthInstance3DBoxes
liyinhao's avatar
liyinhao committed
6
from mmdet.datasets import DATASETS
zhangwenwei's avatar
zhangwenwei committed
7
from .custom_3d import Custom3DDataset
liyinhao's avatar
liyinhao committed
8
9
10


@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
11
class SUNRGBDDataset(Custom3DDataset):
zhangwenwei's avatar
zhangwenwei committed
12
    r"""SUNRGBD Dataset.
liyinhao's avatar
liyinhao committed
13

wangtai's avatar
wangtai committed
14
15
    This class serves as the API for experiments on the SUNRGBD Dataset.

zhangwenwei's avatar
zhangwenwei committed
16
17
    See the `download page <http://rgbd.cs.princeton.edu/challenge.html>`_
    for data downloading.
wangtai's avatar
wangtai committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'Depth' in this dataset. Available options includes

wangtai's avatar
wangtai committed
33
34
35
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
wangtai's avatar
wangtai committed
36
37
38
39
40
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
liyinhao's avatar
liyinhao committed
41
42
43
44
    CLASSES = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
               'night_stand', 'bookshelf', 'bathtub')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
45
                 data_root,
liyinhao's avatar
liyinhao committed
46
47
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
48
                 classes=None,
liyinhao's avatar
liyinhao committed
49
                 modality=None,
50
                 box_type_3d='Depth',
wuyuefeng's avatar
Votenet  
wuyuefeng committed
51
                 filter_empty_gt=True,
zhangwenwei's avatar
zhangwenwei committed
52
                 test_mode=False):
53
54
55
56
57
58
59
60
61
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
            test_mode=test_mode)
liyinhao's avatar
liyinhao committed
62

liyinhao's avatar
liyinhao committed
63
    def get_ann_info(self, index):
64
65
66
67
68
69
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
70
            dict: annotation information consists of the following keys:
71

zhangwenwei's avatar
zhangwenwei committed
72
                - gt_bboxes_3d (:obj:`DepthInstance3DBoxes`): \
73
                    3D ground truth bboxes
wangtai's avatar
wangtai committed
74
75
76
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - pts_instance_mask_path (str): Path of instance masks.
                - pts_semantic_mask_path (str): Path of semantic masks.
77
        """
liyinhao's avatar
liyinhao committed
78
        # Use index to get the annos, thus the evalhook could also use this api
liyinhao's avatar
liyinhao committed
79
        info = self.data_infos[index]
liyinhao's avatar
liyinhao committed
80
        if info['annos']['gt_num'] != 0:
liyinhao's avatar
liyinhao committed
81
82
83
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
                np.float32)  # k, 6
            gt_labels_3d = info['annos']['class'].astype(np.long)
liyinhao's avatar
liyinhao committed
84
        else:
liyinhao's avatar
liyinhao committed
85
            gt_bboxes_3d = np.zeros((0, 7), dtype=np.float32)
liyinhao's avatar
liyinhao committed
86
            gt_labels_3d = np.zeros((0, ), dtype=np.long)
liyinhao's avatar
liyinhao committed
87

wuyuefeng's avatar
wuyuefeng committed
88
89
90
91
        # to target box structure
        gt_bboxes_3d = DepthInstance3DBoxes(
            gt_bboxes_3d, origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

liyinhao's avatar
liyinhao committed
92
        anns_results = dict(
liyinhao's avatar
liyinhao committed
93
            gt_bboxes_3d=gt_bboxes_3d, gt_labels_3d=gt_labels_3d)
liyinhao's avatar
liyinhao committed
94
        return anns_results
liyinhao's avatar
liyinhao committed
95
96

    def show(self, results, out_dir):
97
98
99
100
101
102
        """Results visualization.

        Args:
            results (list[dict]): List of bounding boxes results.
            out_dir (str): Output directory of visualization result.
        """
liyinhao's avatar
liyinhao committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        assert out_dir is not None, 'Expect out_dir, got none.'
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
            points = np.fromfile(
                osp.join(self.data_root, pts_path),
                dtype=np.float32).reshape(-1, 6)
            points[:, 3:] *= 255
            if data_info['annos']['gt_num'] > 0:
                gt_bboxes = data_info['annos']['gt_boxes_upright_depth']
            else:
                gt_bboxes = np.zeros((0, 7))
            pred_bboxes = result['boxes_3d'].tensor.numpy()
            pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
            show_result(points, gt_bboxes, pred_bboxes, out_dir, file_name)