test_box3d.py 59.1 KB
Newer Older
1
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
2
import pytest
3
import torch
liyinhao's avatar
liyinhao committed
4
import unittest
5

liyinhao's avatar
liyinhao committed
6
7
from mmdet3d.core.bbox import (BaseInstance3DBoxes, Box3DMode,
                               CameraInstance3DBoxes, DepthInstance3DBoxes,
yinchimaoliang's avatar
yinchimaoliang committed
8
9
                               LiDARInstance3DBoxes, bbox3d2roi,
                               bbox3d_mapping_back)
liyinhao's avatar
liyinhao committed
10
11
12
13
14
15
from mmdet3d.core.bbox.structures.utils import (get_box_type, limit_period,
                                                points_cam2img,
                                                rotation_3d_in_axis,
                                                xywhr2xyxyr)


yinchimaoliang's avatar
yinchimaoliang committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
def test_bbox3d_mapping_back():
    bboxes = BaseInstance3DBoxes(
        [[
            -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -9.14345860e-01, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, 2.00889888e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.94612112e-01, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]])
    new_bboxes = bbox3d_mapping_back(bboxes, 1.1, True, True)
    expected_new_bboxes = torch.tensor(
        [[-4.7657, 36.3827, 0.2705, 1.8745, 4.0082, 1.4073, -1.4880],
         [-24.2501, 5.0864, -0.8312, 0.3118, 0.4164, 0.7109, -4.6276],
         [-5.2816, 32.1902, 0.1826, 2.1782, 3.6082, 1.5745, -4.6520],
         [-28.4624, 0.9910, -0.1769, 1.7673, 3.5064, 1.5664, -2.8143]])
    assert torch.allclose(new_bboxes.tensor, expected_new_bboxes, atol=1e-4)


def test_bbox3d2roi():
    bbox_0 = torch.tensor(
        [[-5.2422, 4.0020, 2.9757, 2.0620, 4.4090, 1.5480, -1.4880],
         [-5.8097, 3.5409, 2.0088, 2.3960, 3.9690, 1.7320, -4.6520]])
    bbox_1 = torch.tensor(
        [[-2.6675, 5.5949, -9.1434, 3.4300, 4.5800, 7.8200, -4.6275],
         [-3.1308, 1.0900, -1.9461, 1.9440, 3.8570, 1.7230, -2.8142]])
    bbox_list = [bbox_0, bbox_1]
    rois = bbox3d2roi(bbox_list)
    expected_rois = torch.tensor(
        [[0.0000, -5.2422, 4.0020, 2.9757, 2.0620, 4.4090, 1.5480, -1.4880],
         [0.0000, -5.8097, 3.5409, 2.0088, 2.3960, 3.9690, 1.7320, -4.6520],
         [1.0000, -2.6675, 5.5949, -9.1434, 3.4300, 4.5800, 7.8200, -4.6275],
         [1.0000, -3.1308, 1.0900, -1.9461, 1.9440, 3.8570, 1.7230, -2.8142]])
    assert torch.all(torch.eq(rois, expected_rois))


liyinhao's avatar
liyinhao committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
def test_base_boxes3d():
    # test empty initialization
    empty_boxes = []
    boxes = BaseInstance3DBoxes(empty_boxes)
    assert boxes.tensor.shape[0] == 0
    assert boxes.tensor.shape[1] == 7

    # Test init with origin
    gravity_center_box = np.array(
        [[
            -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -9.14345860e-01, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, 2.00889888e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.94612112e-01, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]],
        dtype=np.float32)

    bottom_center_box = BaseInstance3DBoxes(
        gravity_center_box, origin=(0.5, 0.5, 0.5))

    assert bottom_center_box.yaw.shape[0] == 4
91
92
93


def test_lidar_boxes3d():
zhangwenwei's avatar
zhangwenwei committed
94
95
96
97
98
99
    # test empty initialization
    empty_boxes = []
    boxes = LiDARInstance3DBoxes(empty_boxes)
    assert boxes.tensor.shape[0] == 0
    assert boxes.tensor.shape[1] == 7

zhangwenwei's avatar
zhangwenwei committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    # Test init with origin
    gravity_center_box = np.array(
        [[
            -5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -9.14345860e-01, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, 2.00889888e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.94612112e-01, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]],
        dtype=np.float32)
    bottom_center_box = LiDARInstance3DBoxes(
wuyuefeng's avatar
wuyuefeng committed
120
        gravity_center_box, origin=(0.5, 0.5, 0.5))
zhangwenwei's avatar
zhangwenwei committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    expected_tensor = torch.tensor(
        [[
            -5.24223238e+00, 4.00209696e+01, -4.76429619e-01, 2.06200000e+00,
            4.40900000e+00, 1.54800000e+00, -1.48801203e+00
        ],
         [
             -2.66751588e+01, 5.59499564e+00, -1.30534586e+00, 3.43000000e-01,
             4.58000000e-01, 7.82000000e-01, -4.62759755e+00
         ],
         [
             -5.80979675e+00, 3.54092357e+01, -6.65110112e-01, 2.39600000e+00,
             3.96900000e+00, 1.73200000e+00, -4.65203216e+00
         ],
         [
             -3.13086877e+01, 1.09007628e+00, -1.05611211e+00, 1.94400000e+00,
             3.85700000e+00, 1.72300000e+00, -2.81427027e+00
         ]])
    assert torch.allclose(expected_tensor, bottom_center_box.tensor)

140
141
142
143
144
145
146
147
    # Test init with numpy array
    np_boxes = np.array(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62]],
        dtype=np.float32)
    boxes_1 = LiDARInstance3DBoxes(np_boxes)
    assert torch.allclose(boxes_1.tensor, torch.from_numpy(np_boxes))

zhangwenwei's avatar
zhangwenwei committed
148
149
150
151
152
153
    # test properties
    assert boxes_1.volume.size(0) == 2
    assert (boxes_1.center == boxes_1.bottom_center).all()
    assert repr(boxes) == (
        'LiDARInstance3DBoxes(\n    tensor([], size=(0, 7)))')

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[
            28.29669987, -0.5557558, -1.30332506, 1.47000003, 2.23000002,
            1.48000002, -1.57000005
        ],
         [
             26.66901946, 21.82302134, -1.73605708, 1.55999994, 3.48000002,
             1.39999998, -1.69000006
         ],
         [
             31.31977974, 8.16214412, -1.62177875, 1.74000001, 3.76999998,
             1.48000002, 2.78999996
         ]],
        dtype=torch.float32)
    boxes_2 = LiDARInstance3DBoxes(th_boxes)
    assert torch.allclose(boxes_2.tensor, th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
    expected_tensor = torch.tensor(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
         [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
         [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
         [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]])
    boxes = LiDARInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
185
186
187
188
    # concatenate empty list
    empty_boxes = LiDARInstance3DBoxes.cat([])
    assert empty_boxes.tensor.shape[0] == 0
    assert empty_boxes.tensor.shape[-1] == 7
189
190

    # test box flip
liyinhao's avatar
liyinhao committed
191
192
193
194
195
    points = torch.tensor([[1.2559, -0.6762, -1.4658],
                           [4.7814, -0.8784,
                            -1.3857], [6.7053, 0.2517, -0.9697],
                           [0.6533, -0.5520, -0.5265],
                           [4.5870, 0.5358, -1.4741]])
196
197
198
199
200
201
    expected_tensor = torch.tensor(
        [[1.7802081, -2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.6615927],
         [8.959413, -2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.5215927],
         [28.2967, 0.5557558, -1.303325, 1.47, 2.23, 1.48, 4.7115927],
         [26.66902, -21.82302, -1.736057, 1.56, 3.48, 1.4, 4.8315926],
         [31.31978, -8.162144, -1.6217787, 1.74, 3.77, 1.48, 0.35159278]])
liyinhao's avatar
liyinhao committed
202
203
204
205
206
207
    expected_points = torch.tensor([[1.2559, 0.6762, -1.4658],
                                    [4.7814, 0.8784, -1.3857],
                                    [6.7053, -0.2517, -0.9697],
                                    [0.6533, 0.5520, -0.5265],
                                    [4.5870, -0.5358, -1.4741]])
    points = boxes.flip('horizontal', points)
208
    assert torch.allclose(boxes.tensor, expected_tensor)
liyinhao's avatar
liyinhao committed
209
    assert torch.allclose(points, expected_points, 1e-3)
210

wuyuefeng's avatar
wuyuefeng committed
211
212
213
214
215
216
217
    expected_tensor = torch.tensor(
        [[-1.7802, -2.5162, -1.7501, 1.7500, 3.3900, 1.6500, -1.6616],
         [-8.9594, -2.4567, -1.6357, 1.5400, 4.0100, 1.5700, -1.5216],
         [-28.2967, 0.5558, -1.3033, 1.4700, 2.2300, 1.4800, -4.7116],
         [-26.6690, -21.8230, -1.7361, 1.5600, 3.4800, 1.4000, -4.8316],
         [-31.3198, -8.1621, -1.6218, 1.7400, 3.7700, 1.4800, -0.3516]])
    boxes_flip_vert = boxes.clone()
liyinhao's avatar
liyinhao committed
218
219
220
221
222
223
    points = boxes_flip_vert.flip('vertical', points)
    expected_points = torch.tensor([[-1.2559, 0.6762, -1.4658],
                                    [-4.7814, 0.8784, -1.3857],
                                    [-6.7053, -0.2517, -0.9697],
                                    [-0.6533, 0.5520, -0.5265],
                                    [-4.5870, -0.5358, -1.4741]])
wuyuefeng's avatar
wuyuefeng committed
224
    assert torch.allclose(boxes_flip_vert.tensor, expected_tensor, 1e-4)
liyinhao's avatar
liyinhao committed
225
    assert torch.allclose(points, expected_points)
wuyuefeng's avatar
wuyuefeng committed
226

227
228
    # test box rotation
    expected_tensor = torch.tensor(
liyinhao's avatar
liyinhao committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        [[1.4225, -2.7344, -1.7501, 1.7500, 3.3900, 1.6500, 1.7976],
         [8.5435, -3.6491, -1.6357, 1.5400, 4.0100, 1.5700, 1.6576],
         [28.1106, -3.2869, -1.3033, 1.4700, 2.2300, 1.4800, 4.8476],
         [23.4630, -25.2382, -1.7361, 1.5600, 3.4800, 1.4000, 4.9676],
         [29.9235, -12.3342, -1.6218, 1.7400, 3.7700, 1.4800, 0.4876]])
    points, rot_mat_T = boxes.rotate(0.13603681398218053, points)
    expected_points = torch.tensor([[-1.1526, 0.8403, -1.4658],
                                    [-4.6181, 1.5187, -1.3857],
                                    [-6.6775, 0.6600, -0.9697],
                                    [-0.5724, 0.6355, -0.5265],
                                    [-4.6173, 0.0912, -1.4741]])
    expected_rot_mat_T = torch.tensor([[0.9908, -0.1356, 0.0000],
                                       [0.1356, 0.9908, 0.0000],
                                       [0.0000, 0.0000, 1.0000]])
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

    points_np = np.array([[-1.0280, 0.9888,
                           -1.4658], [-4.3695, 2.1310, -1.3857],
                          [-6.5263, 1.5595,
                           -0.9697], [-0.4809, 0.7073, -0.5265],
                          [-4.5623, 0.7166, -1.4741]])
    points_np, rot_mat_T_np = boxes.rotate(0.13603681398218053, points_np)
    expected_points_np = np.array([[-0.8844, 1.1191, -1.4658],
                                   [-4.0401, 2.7039, -1.3857],
                                   [-6.2545, 2.4302, -0.9697],
                                   [-0.3805, 0.7660, -0.5265],
                                   [-4.4230, 1.3287, -1.4741]])
    expected_rot_mat_T_np = np.array([[0.9908, -0.1356, 0.0000],
                                      [0.1356, 0.9908, 0.0000],
                                      [0.0000, 0.0000, 1.0000]])

    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

    # test box scaling
    expected_tensor = torch.tensor([[
        1.0443488, -2.9183323, -1.7599131, 1.7597977, 3.4089797, 1.6592377,
        1.9336663
    ],
                                    [
                                        8.014273, -4.8007393, -1.6448704,
                                        1.5486219, 4.0324507, 1.57879,
                                        1.7936664
                                    ],
                                    [
                                        27.558605, -7.1084175, -1.310622,
                                        1.4782301, 2.242485, 1.488286,
                                        4.9836664
                                    ],
                                    [
                                        19.934517, -28.344835, -1.7457767,
                                        1.5687338, 3.4994833, 1.4078381,
                                        5.1036663
                                    ],
                                    [
                                        28.130915, -16.369587, -1.6308585,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    boxes.scale(1.00559866335275)
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box translation
    expected_tensor = torch.tensor([[
        1.1281544, -3.0507944, -1.9169292, 1.7597977, 3.4089797, 1.6592377,
        1.9336663
    ],
                                    [
                                        8.098079, -4.9332013, -1.8018866,
                                        1.5486219, 4.0324507, 1.57879,
                                        1.7936664
                                    ],
                                    [
                                        27.64241, -7.2408795, -1.4676381,
                                        1.4782301, 2.242485, 1.488286,
                                        4.9836664
                                    ],
                                    [
                                        20.018322, -28.477297, -1.9027928,
                                        1.5687338, 3.4994833, 1.4078381,
                                        5.1036663
                                    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    boxes.translate([0.0838056, -0.13246193, -0.15701613])
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test bbox in_range_bev
    expected_tensor = torch.tensor([1, 1, 1, 1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

zhangwenwei's avatar
zhangwenwei committed
328
329
330
331
332
    # test bbox in_range
    expected_tensor = torch.tensor([1, 1, 0, 0, 0], dtype=torch.bool)
    mask = boxes.in_range_3d([0, -20, -2, 22, 2, 5])
    assert (mask == expected_tensor).all()

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    # test bbox indexing
    index_boxes = boxes[2:5]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
        4.9836664
    ],
                                    [
                                        20.018322, -28.477297, -1.9027928,
                                        1.5687338, 3.4994833, 1.4078381,
                                        5.1036663
                                    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    assert len(index_boxes) == 3
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    index_boxes = boxes[2]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
        4.9836664
    ]])
    assert len(index_boxes) == 1
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    index_boxes = boxes[[2, 4]]
    expected_tensor = torch.tensor([[
        27.64241, -7.2408795, -1.4676381, 1.4782301, 2.242485, 1.488286,
        4.9836664
    ],
                                    [
                                        28.21472, -16.502048, -1.7878747,
                                        1.7497417, 3.791107, 1.488286,
                                        0.6236664
                                    ]])
    assert len(index_boxes) == 2
    assert torch.allclose(index_boxes.tensor, expected_tensor)

    # test iteration
    for i, box in enumerate(index_boxes):
        torch.allclose(box, expected_tensor[i])
zhangwenwei's avatar
zhangwenwei committed
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

    # test properties
    assert torch.allclose(boxes.bottom_center, boxes.tensor[:, :3])
    expected_tensor = (
        boxes.tensor[:, :3] - boxes.tensor[:, 3:6] *
        (torch.tensor([0.5, 0.5, 0]) - torch.tensor([0.5, 0.5, 0.5])))
    assert torch.allclose(boxes.gravity_center, expected_tensor)

    boxes.limit_yaw()
    assert (boxes.tensor[:, 6] <= np.pi / 2).all()
    assert (boxes.tensor[:, 6] >= -np.pi / 2).all()

    Box3DMode.convert(boxes, Box3DMode.LIDAR, Box3DMode.LIDAR)
    expected_tesor = boxes.tensor.clone()
    assert torch.allclose(expected_tesor, boxes.tensor)

    boxes.flip()
    boxes.flip()
    boxes.limit_yaw()
    assert torch.allclose(expected_tesor, boxes.tensor)

    # test nearest_bev
    expected_tensor = torch.tensor([[-0.5763, -3.9307, 2.8326, -2.1709],
                                    [6.0819, -5.7075, 10.1143, -4.1589],
                                    [26.5212, -7.9800, 28.7637, -6.5018],
                                    [18.2686, -29.2617, 21.7681, -27.6929],
                                    [27.3398, -18.3976, 29.0896, -14.6065]])
    # the pytorch print loses some precision
    assert torch.allclose(
wuyuefeng's avatar
wuyuefeng committed
405
        boxes.nearest_bev, expected_tensor, rtol=1e-4, atol=1e-7)
zhangwenwei's avatar
zhangwenwei committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

    # obtained by the print of the original implementation
    expected_tensor = torch.tensor([[[2.4093e+00, -4.4784e+00, -1.9169e+00],
                                     [2.4093e+00, -4.4784e+00, -2.5769e-01],
                                     [-7.7767e-01, -3.2684e+00, -2.5769e-01],
                                     [-7.7767e-01, -3.2684e+00, -1.9169e+00],
                                     [3.0340e+00, -2.8332e+00, -1.9169e+00],
                                     [3.0340e+00, -2.8332e+00, -2.5769e-01],
                                     [-1.5301e-01, -1.6232e+00, -2.5769e-01],
                                     [-1.5301e-01, -1.6232e+00, -1.9169e+00]],
                                    [[9.8933e+00, -6.1340e+00, -1.8019e+00],
                                     [9.8933e+00, -6.1340e+00, -2.2310e-01],
                                     [5.9606e+00, -5.2427e+00, -2.2310e-01],
                                     [5.9606e+00, -5.2427e+00, -1.8019e+00],
                                     [1.0236e+01, -4.6237e+00, -1.8019e+00],
                                     [1.0236e+01, -4.6237e+00, -2.2310e-01],
                                     [6.3029e+00, -3.7324e+00, -2.2310e-01],
                                     [6.3029e+00, -3.7324e+00, -1.8019e+00]],
                                    [[2.8525e+01, -8.2534e+00, -1.4676e+00],
                                     [2.8525e+01, -8.2534e+00, 2.0648e-02],
                                     [2.6364e+01, -7.6525e+00, 2.0648e-02],
                                     [2.6364e+01, -7.6525e+00, -1.4676e+00],
                                     [2.8921e+01, -6.8292e+00, -1.4676e+00],
                                     [2.8921e+01, -6.8292e+00, 2.0648e-02],
                                     [2.6760e+01, -6.2283e+00, 2.0648e-02],
                                     [2.6760e+01, -6.2283e+00, -1.4676e+00]],
                                    [[2.1337e+01, -2.9870e+01, -1.9028e+00],
                                     [2.1337e+01, -2.9870e+01, -4.9495e-01],
                                     [1.8102e+01, -2.8535e+01, -4.9495e-01],
                                     [1.8102e+01, -2.8535e+01, -1.9028e+00],
                                     [2.1935e+01, -2.8420e+01, -1.9028e+00],
                                     [2.1935e+01, -2.8420e+01, -4.9495e-01],
                                     [1.8700e+01, -2.7085e+01, -4.9495e-01],
                                     [1.8700e+01, -2.7085e+01, -1.9028e+00]],
                                    [[2.6398e+01, -1.7530e+01, -1.7879e+00],
                                     [2.6398e+01, -1.7530e+01, -2.9959e-01],
                                     [2.8612e+01, -1.4452e+01, -2.9959e-01],
                                     [2.8612e+01, -1.4452e+01, -1.7879e+00],
                                     [2.7818e+01, -1.8552e+01, -1.7879e+00],
                                     [2.7818e+01, -1.8552e+01, -2.9959e-01],
                                     [3.0032e+01, -1.5474e+01, -2.9959e-01],
                                     [3.0032e+01, -1.5474e+01, -1.7879e+00]]])
    # the pytorch print loses some precision
    assert torch.allclose(boxes.corners, expected_tensor, rtol=1e-4, atol=1e-7)
zhangwenwei's avatar
zhangwenwei committed
450

wuyuefeng's avatar
wuyuefeng committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    # test new_box
    new_box1 = boxes.new_box([[1, 2, 3, 4, 5, 6, 7]])
    assert torch.allclose(
        new_box1.tensor,
        torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=boxes.tensor.dtype))
    assert new_box1.device == boxes.device
    assert new_box1.with_yaw == boxes.with_yaw
    assert new_box1.box_dim == boxes.box_dim

    new_box2 = boxes.new_box(np.array([[1, 2, 3, 4, 5, 6, 7]]))
    assert torch.allclose(
        new_box2.tensor,
        torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=boxes.tensor.dtype))

    new_box3 = boxes.new_box(torch.tensor([[1, 2, 3, 4, 5, 6, 7]]))
    assert torch.allclose(
        new_box3.tensor,
        torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=boxes.tensor.dtype))

zhangwenwei's avatar
zhangwenwei committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

def test_boxes_conversion():
    """Test the conversion of boxes between different modes.

    ComandLine:
        xdoctest tests/test_box3d.py::test_boxes_conversion zero
    """
    lidar_boxes = LiDARInstance3DBoxes(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
         [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
         [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
         [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]])
    cam_box_tensor = Box3DMode.convert(lidar_boxes.tensor, Box3DMode.LIDAR,
                                       Box3DMode.CAM)
zhangwenwei's avatar
zhangwenwei committed
485
486
    expected_box = lidar_boxes.convert_to(Box3DMode.CAM)
    assert torch.equal(expected_box.tensor, cam_box_tensor)
487
488
489
490

    # Some properties should be the same
    cam_boxes = CameraInstance3DBoxes(cam_box_tensor)
    assert torch.equal(cam_boxes.height, lidar_boxes.height)
zhangwenwei's avatar
zhangwenwei committed
491
492
493
    assert torch.equal(cam_boxes.top_height, -lidar_boxes.top_height)
    assert torch.equal(cam_boxes.bottom_height, -lidar_boxes.bottom_height)
    assert torch.allclose(cam_boxes.volume, lidar_boxes.volume)
494

zhangwenwei's avatar
zhangwenwei committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
    lidar_box_tensor = Box3DMode.convert(cam_box_tensor, Box3DMode.CAM,
                                         Box3DMode.LIDAR)
    expected_tensor = torch.tensor(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
         [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
         [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
         [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]])

    assert torch.allclose(expected_tensor, lidar_box_tensor)
    assert torch.allclose(lidar_boxes.tensor, lidar_box_tensor)

    depth_box_tensor = Box3DMode.convert(cam_box_tensor, Box3DMode.CAM,
                                         Box3DMode.DEPTH)
    depth_to_cam_box_tensor = Box3DMode.convert(depth_box_tensor,
                                                Box3DMode.DEPTH, Box3DMode.CAM)
    assert torch.allclose(cam_box_tensor, depth_to_cam_box_tensor)

zhangwenwei's avatar
zhangwenwei committed
513
514
515
    # test similar mode conversion
    same_results = Box3DMode.convert(depth_box_tensor, Box3DMode.DEPTH,
                                     Box3DMode.DEPTH)
zhangwenwei's avatar
zhangwenwei committed
516
    assert torch.equal(same_results, depth_box_tensor)
zhangwenwei's avatar
zhangwenwei committed
517

zhangwenwei's avatar
zhangwenwei committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
    # test conversion with a given rt_mat
    camera_boxes = CameraInstance3DBoxes(
        [[0.06, 1.77, 21.4, 3.2, 1.61, 1.66, -1.54],
         [6.59, 1.53, 6.76, 12.78, 3.66, 2.28, 1.55],
         [6.71, 1.59, 22.18, 14.73, 3.64, 2.32, 1.59],
         [7.11, 1.58, 34.54, 10.04, 3.61, 2.32, 1.61],
         [7.78, 1.65, 45.95, 12.83, 3.63, 2.34, 1.64]])

    rect = torch.tensor(
        [[0.9999239, 0.00983776, -0.00744505, 0.],
         [-0.0098698, 0.9999421, -0.00427846, 0.],
         [0.00740253, 0.00435161, 0.9999631, 0.], [0., 0., 0., 1.]],
        dtype=torch.float32)

    Trv2c = torch.tensor(
        [[7.533745e-03, -9.999714e-01, -6.166020e-04, -4.069766e-03],
         [1.480249e-02, 7.280733e-04, -9.998902e-01, -7.631618e-02],
         [9.998621e-01, 7.523790e-03, 1.480755e-02, -2.717806e-01],
         [0.000000e+00, 0.000000e+00, 0.000000e+00, 1.000000e+00]],
        dtype=torch.float32)

    expected_tensor = torch.tensor(
        [[
            2.16902434e+01, -4.06038554e-02, -1.61906639e+00, 1.65999997e+00,
            3.20000005e+00, 1.61000001e+00, -1.53999996e+00
        ],
         [
             7.05006905e+00, -6.57459601e+00, -1.60107949e+00, 2.27999997e+00,
             1.27799997e+01, 3.66000009e+00, 1.54999995e+00
         ],
         [
             2.24698818e+01, -6.69203759e+00, -1.50118145e+00, 2.31999993e+00,
             1.47299995e+01, 3.64000010e+00, 1.59000003e+00
         ],
         [
             3.48291965e+01, -7.09058388e+00, -1.36622983e+00, 2.31999993e+00,
             1.00400000e+01, 3.60999990e+00, 1.61000001e+00
         ],
         [
             4.62394617e+01, -7.75838800e+00, -1.32405020e+00, 2.33999991e+00,
             1.28299999e+01, 3.63000011e+00, 1.63999999e+00
         ]],
        dtype=torch.float32)

    rt_mat = rect @ Trv2c
zhangwenwei's avatar
zhangwenwei committed
563
564
    # test coversion with Box type
    cam_to_lidar_box = Box3DMode.convert(camera_boxes, Box3DMode.CAM,
zhangwenwei's avatar
zhangwenwei committed
565
                                         Box3DMode.LIDAR, rt_mat.inverse())
zhangwenwei's avatar
zhangwenwei committed
566
    assert torch.allclose(cam_to_lidar_box.tensor, expected_tensor)
zhangwenwei's avatar
zhangwenwei committed
567

zhangwenwei's avatar
zhangwenwei committed
568
569
570
    lidar_to_cam_box = Box3DMode.convert(cam_to_lidar_box.tensor,
                                         Box3DMode.LIDAR, Box3DMode.CAM,
                                         rt_mat)
zhangwenwei's avatar
zhangwenwei committed
571
    assert torch.allclose(lidar_to_cam_box, camera_boxes.tensor)
zhangwenwei's avatar
zhangwenwei committed
572
573
574
575
576
577
578
579
580
581
582
583
584
585

    # test numpy convert
    cam_to_lidar_box = Box3DMode.convert(camera_boxes.tensor.numpy(),
                                         Box3DMode.CAM, Box3DMode.LIDAR,
                                         rt_mat.inverse().numpy())
    assert np.allclose(cam_to_lidar_box, expected_tensor.numpy())

    # test list convert
    cam_to_lidar_box = Box3DMode.convert(
        camera_boxes.tensor[0].numpy().tolist(), Box3DMode.CAM,
        Box3DMode.LIDAR,
        rt_mat.inverse().numpy())
    assert np.allclose(np.array(cam_to_lidar_box), expected_tensor[0].numpy())

wuyuefeng's avatar
wuyuefeng committed
586
587
588
589
590
591
    # test convert from depth to lidar
    depth_boxes = torch.tensor(
        [[2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 3.0693],
         [1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601]],
        dtype=torch.float32)
    depth_boxes = DepthInstance3DBoxes(depth_boxes)
zhangwenwei's avatar
zhangwenwei committed
592
593
594
595
    depth_to_lidar_box = depth_boxes.convert_to(Box3DMode.LIDAR)
    expected_box = depth_to_lidar_box.convert_to(Box3DMode.DEPTH)
    assert torch.equal(depth_boxes.tensor, expected_box.tensor)

wuyuefeng's avatar
wuyuefeng committed
596
597
598
599
600
601
602
603
604
605
    lidar_to_depth_box = Box3DMode.convert(depth_to_lidar_box, Box3DMode.LIDAR,
                                           Box3DMode.DEPTH)
    assert torch.allclose(depth_boxes.tensor, lidar_to_depth_box.tensor)
    assert torch.allclose(depth_boxes.volume, lidar_to_depth_box.volume)

    # test convert from depth to camera
    depth_to_cam_box = Box3DMode.convert(depth_boxes, Box3DMode.DEPTH,
                                         Box3DMode.CAM)
    cam_to_depth_box = Box3DMode.convert(depth_to_cam_box, Box3DMode.CAM,
                                         Box3DMode.DEPTH)
zhangwenwei's avatar
zhangwenwei committed
606
607
    expected_tensor = depth_to_cam_box.convert_to(Box3DMode.DEPTH)
    assert torch.equal(expected_tensor.tensor, cam_to_depth_box.tensor)
wuyuefeng's avatar
wuyuefeng committed
608
609
610
611
612
613
614
    assert torch.allclose(depth_boxes.tensor, cam_to_depth_box.tensor)
    assert torch.allclose(depth_boxes.volume, cam_to_depth_box.volume)

    with pytest.raises(NotImplementedError):
        # assert invalid convert mode
        Box3DMode.convert(depth_boxes, Box3DMode.DEPTH, 3)

zhangwenwei's avatar
zhangwenwei committed
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

def test_camera_boxes3d():
    # Test init with numpy array
    np_boxes = np.array(
        [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
         [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62]],
        dtype=np.float32)

    boxes_1 = Box3DMode.convert(
        LiDARInstance3DBoxes(np_boxes), Box3DMode.LIDAR, Box3DMode.CAM)
    assert isinstance(boxes_1, CameraInstance3DBoxes)

    cam_np_boxes = Box3DMode.convert(np_boxes, Box3DMode.LIDAR, Box3DMode.CAM)
    assert torch.allclose(boxes_1.tensor,
                          boxes_1.tensor.new_tensor(cam_np_boxes))

    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[
            28.29669987, -0.5557558, -1.30332506, 1.47000003, 2.23000002,
            1.48000002, -1.57000005
        ],
         [
             26.66901946, 21.82302134, -1.73605708, 1.55999994, 3.48000002,
             1.39999998, -1.69000006
         ],
         [
             31.31977974, 8.16214412, -1.62177875, 1.74000001, 3.76999998,
             1.48000002, 2.78999996
         ]],
        dtype=torch.float32)
    cam_th_boxes = Box3DMode.convert(th_boxes, Box3DMode.LIDAR, Box3DMode.CAM)
    boxes_2 = CameraInstance3DBoxes(cam_th_boxes)
    assert torch.allclose(boxes_2.tensor, cam_th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
    expected_tensor = Box3DMode.convert(
        torch.tensor(
            [[1.7802081, 2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.48],
             [8.959413, 2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.62],
             [28.2967, -0.5557558, -1.303325, 1.47, 2.23, 1.48, -1.57],
             [26.66902, 21.82302, -1.736057, 1.56, 3.48, 1.4, -1.69],
             [31.31978, 8.162144, -1.6217787, 1.74, 3.77, 1.48, 2.79]]),
        Box3DMode.LIDAR, Box3DMode.CAM)
    boxes = CameraInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box flip
liyinhao's avatar
liyinhao committed
667
668
669
    points = torch.tensor([[0.6762, 1.4658, 1.2559], [0.8784, 1.3857, 4.7814],
                           [-0.2517, 0.9697, 6.7053], [0.5520, 0.5265, 0.6533],
                           [-0.5358, 1.4741, 4.5870]])
zhangwenwei's avatar
zhangwenwei committed
670
671
672
673
674
675
676
677
    expected_tensor = Box3DMode.convert(
        torch.tensor(
            [[1.7802081, -2.516249, -1.7501148, 1.75, 3.39, 1.65, 1.6615927],
             [8.959413, -2.4567227, -1.6357126, 1.54, 4.01, 1.57, 1.5215927],
             [28.2967, 0.5557558, -1.303325, 1.47, 2.23, 1.48, 4.7115927],
             [26.66902, -21.82302, -1.736057, 1.56, 3.48, 1.4, 4.8315926],
             [31.31978, -8.162144, -1.6217787, 1.74, 3.77, 1.48, 0.35159278]]),
        Box3DMode.LIDAR, Box3DMode.CAM)
liyinhao's avatar
liyinhao committed
678
679
680
681
682
683
    points = boxes.flip('horizontal', points)
    expected_points = torch.tensor([[-0.6762, 1.4658, 1.2559],
                                    [-0.8784, 1.3857, 4.7814],
                                    [0.2517, 0.9697, 6.7053],
                                    [-0.5520, 0.5265, 0.6533],
                                    [0.5358, 1.4741, 4.5870]])
zhangwenwei's avatar
zhangwenwei committed
684
    assert torch.allclose(boxes.tensor, expected_tensor)
liyinhao's avatar
liyinhao committed
685
    assert torch.allclose(points, expected_points, 1e-3)
zhangwenwei's avatar
zhangwenwei committed
686

wuyuefeng's avatar
wuyuefeng committed
687
688
689
690
691
692
693
    expected_tensor = torch.tensor(
        [[2.5162, 1.7501, -1.7802, 3.3900, 1.6500, 1.7500, -1.6616],
         [2.4567, 1.6357, -8.9594, 4.0100, 1.5700, 1.5400, -1.5216],
         [-0.5558, 1.3033, -28.2967, 2.2300, 1.4800, 1.4700, -4.7116],
         [21.8230, 1.7361, -26.6690, 3.4800, 1.4000, 1.5600, -4.8316],
         [8.1621, 1.6218, -31.3198, 3.7700, 1.4800, 1.7400, -0.3516]])
    boxes_flip_vert = boxes.clone()
liyinhao's avatar
liyinhao committed
694
695
696
697
698
699
    points = boxes_flip_vert.flip('vertical', points)
    expected_points = torch.tensor([[-0.6762, 1.4658, -1.2559],
                                    [-0.8784, 1.3857, -4.7814],
                                    [0.2517, 0.9697, -6.7053],
                                    [-0.5520, 0.5265, -0.6533],
                                    [0.5358, 1.4741, -4.5870]])
wuyuefeng's avatar
wuyuefeng committed
700
    assert torch.allclose(boxes_flip_vert.tensor, expected_tensor, 1e-4)
liyinhao's avatar
liyinhao committed
701
    assert torch.allclose(points, expected_points)
wuyuefeng's avatar
wuyuefeng committed
702

zhangwenwei's avatar
zhangwenwei committed
703
704
705
    # test box rotation
    expected_tensor = Box3DMode.convert(
        torch.tensor(
liyinhao's avatar
liyinhao committed
706
707
708
709
710
            [[1.4225, -2.7344, -1.7501, 1.7500, 3.3900, 1.6500, 1.7976],
             [8.5435, -3.6491, -1.6357, 1.5400, 4.0100, 1.5700, 1.6576],
             [28.1106, -3.2869, -1.3033, 1.4700, 2.2300, 1.4800, 4.8476],
             [23.4630, -25.2382, -1.7361, 1.5600, 3.4800, 1.4000, 4.9676],
             [29.9235, -12.3342, -1.6218, 1.7400, 3.7700, 1.4800, 0.4876]]),
zhangwenwei's avatar
zhangwenwei committed
711
        Box3DMode.LIDAR, Box3DMode.CAM)
liyinhao's avatar
liyinhao committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
    points, rot_mat_T = boxes.rotate(torch.tensor(0.13603681398218053), points)
    expected_points = torch.tensor([[-0.8403, 1.4658, -1.1526],
                                    [-1.5187, 1.3857, -4.6181],
                                    [-0.6600, 0.9697, -6.6775],
                                    [-0.6355, 0.5265, -0.5724],
                                    [-0.0912, 1.4741, -4.6173]])
    expected_rot_mat_T = torch.tensor([[0.9908, 0.0000, -0.1356],
                                       [0.0000, 1.0000, 0.0000],
                                       [0.1356, 0.0000, 0.9908]])
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mat_T, expected_rot_mat_T, 1e-3)

    points_np = np.array([[0.6762, 1.2559, -1.4658, 2.5359],
                          [0.8784, 4.7814, -1.3857, 0.7167],
                          [-0.2517, 6.7053, -0.9697, 0.5599],
                          [0.5520, 0.6533, -0.5265, 1.0032],
                          [-0.5358, 4.5870, -1.4741, 0.0556]])
    points_np, rot_mat_T_np = boxes.rotate(
        torch.tensor(0.13603681398218053), points_np)
    expected_points_np = np.array([[0.4712, 1.2559, -1.5440, 2.5359],
                                   [0.6824, 4.7814, -1.4920, 0.7167],
                                   [-0.3809, 6.7053, -0.9266, 0.5599],
                                   [0.4755, 0.6533, -0.5965, 1.0032],
                                   [-0.7308, 4.5870, -1.3878, 0.0556]])
    expected_rot_mat_T_np = np.array([[0.9908, 0.0000, -0.1356],
                                      [0.0000, 1.0000, 0.0000],
                                      [0.1356, 0.0000, 0.9908]])

    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mat_T_np, expected_rot_mat_T_np, 1e-3)
zhangwenwei's avatar
zhangwenwei committed
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790

    # test box scaling
    expected_tensor = Box3DMode.convert(
        torch.tensor([[
            1.0443488, -2.9183323, -1.7599131, 1.7597977, 3.4089797, 1.6592377,
            1.9336663
        ],
                      [
                          8.014273, -4.8007393, -1.6448704, 1.5486219,
                          4.0324507, 1.57879, 1.7936664
                      ],
                      [
                          27.558605, -7.1084175, -1.310622, 1.4782301,
                          2.242485, 1.488286, 4.9836664
                      ],
                      [
                          19.934517, -28.344835, -1.7457767, 1.5687338,
                          3.4994833, 1.4078381, 5.1036663
                      ],
                      [
                          28.130915, -16.369587, -1.6308585, 1.7497417,
                          3.791107, 1.488286, 0.6236664
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
    boxes.scale(1.00559866335275)
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test box translation
    expected_tensor = Box3DMode.convert(
        torch.tensor([[
            1.1281544, -3.0507944, -1.9169292, 1.7597977, 3.4089797, 1.6592377,
            1.9336663
        ],
                      [
                          8.098079, -4.9332013, -1.8018866, 1.5486219,
                          4.0324507, 1.57879, 1.7936664
                      ],
                      [
                          27.64241, -7.2408795, -1.4676381, 1.4782301,
                          2.242485, 1.488286, 4.9836664
                      ],
                      [
                          20.018322, -28.477297, -1.9027928, 1.5687338,
                          3.4994833, 1.4078381, 5.1036663
                      ],
                      [
                          28.21472, -16.502048, -1.7878747, 1.7497417,
                          3.791107, 1.488286, 0.6236664
                      ]]), Box3DMode.LIDAR, Box3DMode.CAM)
zhangwenwei's avatar
zhangwenwei committed
791
    boxes.translate(torch.tensor([0.13246193, 0.15701613, 0.0838056]))
zhangwenwei's avatar
zhangwenwei committed
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test bbox in_range_bev
    expected_tensor = torch.tensor([1, 1, 1, 1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

    # test bbox in_range
    expected_tensor = torch.tensor([1, 1, 0, 0, 0], dtype=torch.bool)
    mask = boxes.in_range_3d([-2, -5, 0, 20, 2, 22])
    assert (mask == expected_tensor).all()

    # test properties
    assert torch.allclose(boxes.bottom_center, boxes.tensor[:, :3])
    expected_tensor = (
        boxes.tensor[:, :3] - boxes.tensor[:, 3:6] *
        (torch.tensor([0.5, 1.0, 0.5]) - torch.tensor([0.5, 0.5, 0.5])))
    assert torch.allclose(boxes.gravity_center, expected_tensor)

    boxes.limit_yaw()
    assert (boxes.tensor[:, 6] <= np.pi / 2).all()
    assert (boxes.tensor[:, 6] >= -np.pi / 2).all()

    Box3DMode.convert(boxes, Box3DMode.LIDAR, Box3DMode.LIDAR)
    expected_tesor = boxes.tensor.clone()
    assert torch.allclose(expected_tesor, boxes.tensor)

    boxes.flip()
    boxes.flip()
    boxes.limit_yaw()
    assert torch.allclose(expected_tesor, boxes.tensor)

    # test nearest_bev
    # BEV box in lidar coordinates (x, y)
    lidar_expected_tensor = torch.tensor(
        [[-0.5763, -3.9307, 2.8326, -2.1709],
         [6.0819, -5.7075, 10.1143, -4.1589],
         [26.5212, -7.9800, 28.7637, -6.5018],
         [18.2686, -29.2617, 21.7681, -27.6929],
         [27.3398, -18.3976, 29.0896, -14.6065]])
    # BEV box in camera coordinate (-y, x)
    expected_tensor = lidar_expected_tensor.clone()
    expected_tensor[:, 0::2] = -lidar_expected_tensor[:, [3, 1]]
    expected_tensor[:, 1::2] = lidar_expected_tensor[:, 0::2]
    # the pytorch print loses some precision
    assert torch.allclose(
wuyuefeng's avatar
wuyuefeng committed
840
        boxes.nearest_bev, expected_tensor, rtol=1e-4, atol=1e-7)
zhangwenwei's avatar
zhangwenwei committed
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885

    # obtained by the print of the original implementation
    expected_tensor = torch.tensor([[[3.2684e+00, 2.5769e-01, -7.7767e-01],
                                     [1.6232e+00, 2.5769e-01, -1.5301e-01],
                                     [1.6232e+00, 1.9169e+00, -1.5301e-01],
                                     [3.2684e+00, 1.9169e+00, -7.7767e-01],
                                     [4.4784e+00, 2.5769e-01, 2.4093e+00],
                                     [2.8332e+00, 2.5769e-01, 3.0340e+00],
                                     [2.8332e+00, 1.9169e+00, 3.0340e+00],
                                     [4.4784e+00, 1.9169e+00, 2.4093e+00]],
                                    [[5.2427e+00, 2.2310e-01, 5.9606e+00],
                                     [3.7324e+00, 2.2310e-01, 6.3029e+00],
                                     [3.7324e+00, 1.8019e+00, 6.3029e+00],
                                     [5.2427e+00, 1.8019e+00, 5.9606e+00],
                                     [6.1340e+00, 2.2310e-01, 9.8933e+00],
                                     [4.6237e+00, 2.2310e-01, 1.0236e+01],
                                     [4.6237e+00, 1.8019e+00, 1.0236e+01],
                                     [6.1340e+00, 1.8019e+00, 9.8933e+00]],
                                    [[7.6525e+00, -2.0648e-02, 2.6364e+01],
                                     [6.2283e+00, -2.0648e-02, 2.6760e+01],
                                     [6.2283e+00, 1.4676e+00, 2.6760e+01],
                                     [7.6525e+00, 1.4676e+00, 2.6364e+01],
                                     [8.2534e+00, -2.0648e-02, 2.8525e+01],
                                     [6.8292e+00, -2.0648e-02, 2.8921e+01],
                                     [6.8292e+00, 1.4676e+00, 2.8921e+01],
                                     [8.2534e+00, 1.4676e+00, 2.8525e+01]],
                                    [[2.8535e+01, 4.9495e-01, 1.8102e+01],
                                     [2.7085e+01, 4.9495e-01, 1.8700e+01],
                                     [2.7085e+01, 1.9028e+00, 1.8700e+01],
                                     [2.8535e+01, 1.9028e+00, 1.8102e+01],
                                     [2.9870e+01, 4.9495e-01, 2.1337e+01],
                                     [2.8420e+01, 4.9495e-01, 2.1935e+01],
                                     [2.8420e+01, 1.9028e+00, 2.1935e+01],
                                     [2.9870e+01, 1.9028e+00, 2.1337e+01]],
                                    [[1.4452e+01, 2.9959e-01, 2.8612e+01],
                                     [1.5474e+01, 2.9959e-01, 3.0032e+01],
                                     [1.5474e+01, 1.7879e+00, 3.0032e+01],
                                     [1.4452e+01, 1.7879e+00, 2.8612e+01],
                                     [1.7530e+01, 2.9959e-01, 2.6398e+01],
                                     [1.8552e+01, 2.9959e-01, 2.7818e+01],
                                     [1.8552e+01, 1.7879e+00, 2.7818e+01],
                                     [1.7530e+01, 1.7879e+00, 2.6398e+01]]])

    # the pytorch print loses some precision
    assert torch.allclose(boxes.corners, expected_tensor, rtol=1e-4, atol=1e-7)
886
887
888


def test_boxes3d_overlaps():
889
890
891
892
893
    """Test the iou calculation of boxes in different modes.

    ComandLine:
        xdoctest tests/test_box3d.py::test_boxes3d_overlaps zero
    """
894
895
896
897
898
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    # Test LiDAR boxes 3D overlaps
    boxes1_tensor = torch.tensor(
899
        [[1.8, -2.5, -1.8, 1.75, 3.39, 1.65, 1.6615927],
900
901
         [8.9, -2.5, -1.6, 1.54, 4.01, 1.57, 1.5215927],
         [28.3, 0.5, -1.3, 1.47, 2.23, 1.48, 4.7115927],
902
         [31.3, -8.2, -1.6, 1.74, 3.77, 1.48, 0.35]],
903
904
905
906
907
        device='cuda')
    boxes1 = LiDARInstance3DBoxes(boxes1_tensor)

    boxes2_tensor = torch.tensor([[1.2, -3.0, -1.9, 1.8, 3.4, 1.7, 1.9],
                                  [8.1, -2.9, -1.8, 1.5, 4.1, 1.6, 1.8],
908
909
                                  [31.3, -8.2, -1.6, 1.74, 3.77, 1.48, 0.35],
                                  [20.1, -28.5, -1.9, 1.6, 3.5, 1.4, 5.1]],
910
911
912
                                 device='cuda')
    boxes2 = LiDARInstance3DBoxes(boxes2_tensor)

liyinhao's avatar
liyinhao committed
913
    expected_iou_tensor = torch.tensor(
914
915
916
        [[0.3710, 0.0000, 0.0000, 0.0000], [0.0000, 0.3322, 0.0000, 0.0000],
         [0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 1.0000, 0.0000]],
        device='cuda')
liyinhao's avatar
liyinhao committed
917
918
919
920
921
922
923
924
925
926
927
    overlaps_3d_iou = boxes1.overlaps(boxes1, boxes2)
    assert torch.allclose(
        expected_iou_tensor, overlaps_3d_iou, rtol=1e-4, atol=1e-7)

    expected_iof_tensor = torch.tensor(
        [[0.5582, 0.0000, 0.0000, 0.0000], [0.0000, 0.5025, 0.0000, 0.0000],
         [0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 1.0000, 0.0000]],
        device='cuda')
    overlaps_3d_iof = boxes1.overlaps(boxes1, boxes2, mode='iof')
    assert torch.allclose(
        expected_iof_tensor, overlaps_3d_iof, rtol=1e-4, atol=1e-7)
928

liyinhao's avatar
liyinhao committed
929
930
931
932
933
    empty_boxes = []
    boxes3 = LiDARInstance3DBoxes(empty_boxes)
    overlaps_3d_empty = boxes1.overlaps(boxes3, boxes2)
    assert overlaps_3d_empty.shape[0] == 0
    assert overlaps_3d_empty.shape[1] == 4
934
935
936
937
938
939
940
941
942
943
    # Test camera boxes 3D overlaps
    cam_boxes1_tensor = Box3DMode.convert(boxes1_tensor, Box3DMode.LIDAR,
                                          Box3DMode.CAM)
    cam_boxes1 = CameraInstance3DBoxes(cam_boxes1_tensor)

    cam_boxes2_tensor = Box3DMode.convert(boxes2_tensor, Box3DMode.LIDAR,
                                          Box3DMode.CAM)
    cam_boxes2 = CameraInstance3DBoxes(cam_boxes2_tensor)
    cam_overlaps_3d = cam_boxes1.overlaps(cam_boxes1, cam_boxes2)

944
945
    # same boxes under different coordinates should have the same iou
    assert torch.allclose(
liyinhao's avatar
liyinhao committed
946
947
        expected_iou_tensor, cam_overlaps_3d, rtol=1e-4, atol=1e-7)
    assert torch.allclose(cam_overlaps_3d, overlaps_3d_iou)
948
949
950
951
952

    with pytest.raises(AssertionError):
        cam_boxes1.overlaps(cam_boxes1, boxes1)
    with pytest.raises(AssertionError):
        boxes1.overlaps(cam_boxes1, boxes1)
wuyuefeng's avatar
wuyuefeng committed
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011


def test_depth_boxes3d():
    # test empty initialization
    empty_boxes = []
    boxes = DepthInstance3DBoxes(empty_boxes)
    assert boxes.tensor.shape[0] == 0
    assert boxes.tensor.shape[1] == 7

    # Test init with numpy array
    np_boxes = np.array(
        [[1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601],
         [2.3262, 3.3065, --0.44255, 0.8234, 0.5325, 1.0099, 2.9971]],
        dtype=np.float32)
    boxes_1 = DepthInstance3DBoxes(np_boxes)
    assert torch.allclose(boxes_1.tensor, torch.from_numpy(np_boxes))

    # test properties

    assert boxes_1.volume.size(0) == 2
    assert (boxes_1.center == boxes_1.bottom_center).all()
    expected_tensor = torch.tensor([[1.4856, 2.5299, -0.1093],
                                    [2.3262, 3.3065, 0.9475]])
    assert torch.allclose(boxes_1.gravity_center, expected_tensor)
    expected_tensor = torch.tensor([[1.4856, 2.5299, 0.9385, 2.1404, 3.0601],
                                    [2.3262, 3.3065, 0.8234, 0.5325, 2.9971]])
    assert torch.allclose(boxes_1.bev, expected_tensor)
    expected_tensor = torch.tensor([[1.0164, 1.4597, 1.9548, 3.6001],
                                    [1.9145, 3.0402, 2.7379, 3.5728]])
    assert torch.allclose(boxes_1.nearest_bev, expected_tensor, 1e-4)
    assert repr(boxes) == (
        'DepthInstance3DBoxes(\n    tensor([], size=(0, 7)))')

    # test init with torch.Tensor
    th_boxes = torch.tensor(
        [[2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 3.0693],
         [1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601]],
        dtype=torch.float32)
    boxes_2 = DepthInstance3DBoxes(th_boxes)
    assert torch.allclose(boxes_2.tensor, th_boxes)

    # test clone/to/device
    boxes_2 = boxes_2.clone()
    boxes_1 = boxes_1.to(boxes_2.device)

    # test box concatenation
    expected_tensor = torch.tensor(
        [[1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601],
         [2.3262, 3.3065, --0.44255, 0.8234, 0.5325, 1.0099, 2.9971],
         [2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 3.0693],
         [1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 3.0601]])
    boxes = DepthInstance3DBoxes.cat([boxes_1, boxes_2])
    assert torch.allclose(boxes.tensor, expected_tensor)
    # concatenate empty list
    empty_boxes = DepthInstance3DBoxes.cat([])
    assert empty_boxes.tensor.shape[0] == 0
    assert empty_boxes.tensor.shape[-1] == 7

    # test box flip
liyinhao's avatar
liyinhao committed
1012
1013
1014
1015
1016
    points = torch.tensor([[0.6762, 1.2559, -1.4658, 2.5359],
                           [0.8784, 4.7814, -1.3857, 0.7167],
                           [-0.2517, 6.7053, -0.9697, 0.5599],
                           [0.5520, 0.6533, -0.5265, 1.0032],
                           [-0.5358, 4.5870, -1.4741, 0.0556]])
wuyuefeng's avatar
wuyuefeng committed
1017
1018
1019
1020
1021
    expected_tensor = torch.tensor(
        [[-1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 0.0815],
         [-2.3262, 3.3065, 0.4426, 0.8234, 0.5325, 1.0099, 0.1445],
         [-2.4593, 2.5870, -0.4321, 0.8597, 0.6193, 1.0204, 0.0723],
         [-1.4856, 2.5299, -0.5570, 0.9385, 2.1404, 0.8954, 0.0815]])
liyinhao's avatar
liyinhao committed
1022
1023
1024
1025
1026
1027
    points = boxes.flip(bev_direction='horizontal', points=points)
    expected_points = torch.tensor([[-0.6762, 1.2559, -1.4658, 2.5359],
                                    [-0.8784, 4.7814, -1.3857, 0.7167],
                                    [0.2517, 6.7053, -0.9697, 0.5599],
                                    [-0.5520, 0.6533, -0.5265, 1.0032],
                                    [0.5358, 4.5870, -1.4741, 0.0556]])
wuyuefeng's avatar
wuyuefeng committed
1028
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
1029
    assert torch.allclose(points, expected_points)
wuyuefeng's avatar
wuyuefeng committed
1030
1031
1032
1033
1034
    expected_tensor = torch.tensor(
        [[-1.4856, -2.5299, -0.5570, 0.9385, 2.1404, 0.8954, -0.0815],
         [-2.3262, -3.3065, 0.4426, 0.8234, 0.5325, 1.0099, -0.1445],
         [-2.4593, -2.5870, -0.4321, 0.8597, 0.6193, 1.0204, -0.0723],
         [-1.4856, -2.5299, -0.5570, 0.9385, 2.1404, 0.8954, -0.0815]])
liyinhao's avatar
liyinhao committed
1035
1036
1037
1038
1039
1040
    points = boxes.flip(bev_direction='vertical', points=points)
    expected_points = torch.tensor([[-0.6762, -1.2559, -1.4658, 2.5359],
                                    [-0.8784, -4.7814, -1.3857, 0.7167],
                                    [0.2517, -6.7053, -0.9697, 0.5599],
                                    [-0.5520, -0.6533, -0.5265, 1.0032],
                                    [0.5358, -4.5870, -1.4741, 0.0556]])
wuyuefeng's avatar
wuyuefeng committed
1041
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
1042
    assert torch.allclose(points, expected_points)
wuyuefeng's avatar
wuyuefeng committed
1043
1044
1045
    # test box rotation
    boxes_rot = boxes.clone()
    expected_tensor = torch.tensor(
liyinhao's avatar
liyinhao committed
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
        [[-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585],
         [-2.4016, -3.2521, 0.4426, 0.8234, 0.5325, 1.0099, -0.1215],
         [-2.5181, -2.5298, -0.4321, 0.8597, 0.6193, 1.0204, -0.0493],
         [-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585]])
    points, rot_mar_T = boxes_rot.rotate(-0.022998953275003075, points)
    expected_points = torch.tensor([[-0.7049, -1.2400, -1.4658, 2.5359],
                                    [-0.9881, -4.7599, -1.3857, 0.7167],
                                    [0.0974, -6.7093, -0.9697, 0.5599],
                                    [-0.5669, -0.6404, -0.5265, 1.0032],
                                    [0.4302, -4.5981, -1.4741, 0.0556]])
    expected_rot_mat_T = torch.tensor([[0.9997, -0.0230, 0.0000],
                                       [0.0230, 0.9997, 0.0000],
                                       [0.0000, 0.0000, 1.0000]])
wuyuefeng's avatar
wuyuefeng committed
1059
    assert torch.allclose(boxes_rot.tensor, expected_tensor, 1e-3)
liyinhao's avatar
liyinhao committed
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
    assert torch.allclose(points, expected_points, 1e-3)
    assert torch.allclose(rot_mar_T, expected_rot_mat_T, 1e-3)

    points_np = np.array([[0.6762, 1.2559, -1.4658, 2.5359],
                          [0.8784, 4.7814, -1.3857, 0.7167],
                          [-0.2517, 6.7053, -0.9697, 0.5599],
                          [0.5520, 0.6533, -0.5265, 1.0032],
                          [-0.5358, 4.5870, -1.4741, 0.0556]])
    points_np, rot_mar_T_np = boxes.rotate(-0.022998953275003075, points_np)
    expected_points_np = np.array([[0.7049, 1.2400, -1.4658, 2.5359],
                                   [0.9881, 4.7599, -1.3857, 0.7167],
                                   [-0.0974, 6.7093, -0.9697, 0.5599],
                                   [0.5669, 0.6404, -0.5265, 1.0032],
                                   [-0.4302, 4.5981, -1.4741, 0.0556]])
    expected_rot_mat_T_np = np.array([[0.9997, -0.0230, 0.0000],
                                      [0.0230, 0.9997, 0.0000],
                                      [0.0000, 0.0000, 1.0000]])
    expected_tensor = torch.tensor(
        [[-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585],
         [-2.4016, -3.2521, 0.4426, 0.8234, 0.5325, 1.0099, -0.1215],
         [-2.5181, -2.5298, -0.4321, 0.8597, 0.6193, 1.0204, -0.0493],
         [-1.5434, -2.4951, -0.5570, 0.9385, 2.1404, 0.8954, -0.0585]])
    assert torch.allclose(boxes.tensor, expected_tensor, 1e-3)
    assert np.allclose(points_np, expected_points_np, 1e-3)
    assert np.allclose(rot_mar_T_np, expected_rot_mat_T_np, 1e-3)
wuyuefeng's avatar
wuyuefeng committed
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
    th_boxes = torch.tensor(
        [[0.61211395, 0.8129094, 0.10563634, 1.497534, 0.16927195, 0.27956772],
         [1.430009, 0.49797538, 0.9382923, 0.07694054, 0.9312509, 1.8919173]],
        dtype=torch.float32)
    boxes = DepthInstance3DBoxes(th_boxes, box_dim=6, with_yaw=False)
    expected_tensor = torch.tensor([[
        0.64884546, 0.78390356, 0.10563634, 1.50373348, 0.23795205, 0.27956772,
        0
    ],
                                    [
                                        1.45139421, 0.43169443, 0.93829232,
                                        0.11967964, 0.93380373, 1.89191735, 0
                                    ]])
    boxes_3 = boxes.clone()
    boxes_3.rotate(-0.04599790655000615)
    assert torch.allclose(boxes_3.tensor, expected_tensor)
    boxes.rotate(torch.tensor(-0.04599790655000615))
    assert torch.allclose(boxes.tensor, expected_tensor)

    # test bbox in_range_bev
    expected_tensor = torch.tensor([1, 1], dtype=torch.bool)
    mask = boxes.in_range_bev([0., -40., 70.4, 40.])
    assert (mask == expected_tensor).all()
    mask = boxes.nonempty()
    assert (mask == expected_tensor).all()

    expected_tensor = torch.tensor([[[-0.1030, 0.6649, 0.1056],
                                     [-0.1030, 0.6649, 0.3852],
                                     [-0.1030, 0.9029, 0.3852],
                                     [-0.1030, 0.9029, 0.1056],
                                     [1.4007, 0.6649, 0.1056],
                                     [1.4007, 0.6649, 0.3852],
                                     [1.4007, 0.9029, 0.3852],
                                     [1.4007, 0.9029, 0.1056]],
                                    [[1.3916, -0.0352, 0.9383],
                                     [1.3916, -0.0352, 2.8302],
                                     [1.3916, 0.8986, 2.8302],
                                     [1.3916, 0.8986, 0.9383],
                                     [1.5112, -0.0352, 0.9383],
                                     [1.5112, -0.0352, 2.8302],
                                     [1.5112, 0.8986, 2.8302],
                                     [1.5112, 0.8986, 0.9383]]])
    torch.allclose(boxes.corners, expected_tensor)
liyinhao's avatar
liyinhao committed
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137

    # test points in boxes
    if torch.cuda.is_available():
        box_idxs_of_pts = boxes.points_in_boxes(points.cuda())
        expected_idxs_of_pts = torch.tensor(
            [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]],
            device='cuda:0',
            dtype=torch.int32)
        assert torch.all(box_idxs_of_pts == expected_idxs_of_pts)

encore-zhou's avatar
encore-zhou committed
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
    # test get_surface_line_center
    boxes = torch.tensor(
        [[0.3294, 1.0359, 0.1171, 1.0822, 1.1247, 1.3721, 0.4916],
         [-2.4630, -2.6324, -0.1616, 0.9202, 1.7896, 0.1992, 0.3185]])
    boxes = DepthInstance3DBoxes(
        boxes, box_dim=boxes.shape[-1], with_yaw=True, origin=(0.5, 0.5, 0.5))
    surface_center, line_center = boxes.get_surface_line_center()
    expected_surface_center = torch.tensor([[0.3294, 1.0359, 0.8031],
                                            [-2.4630, -2.6324, -0.0620],
                                            [0.3294, 1.0359, -0.5689],
                                            [-2.4630, -2.6324, -0.2612],
                                            [0.5949, 1.5317, 0.1171],
                                            [-2.1828, -1.7826, -0.1616],
                                            [0.0640, 0.5401, 0.1171],
                                            [-2.7432, -3.4822, -0.1616],
                                            [0.8064, 0.7805, 0.1171],
                                            [-2.0260, -2.7765, -0.1616],
                                            [-0.1476, 1.2913, 0.1171],
                                            [-2.9000, -2.4883, -0.1616]])

    expected_line_center = torch.tensor([[0.8064, 0.7805, 0.8031],
                                         [-2.0260, -2.7765, -0.0620],
                                         [-0.1476, 1.2913, 0.8031],
                                         [-2.9000, -2.4883, -0.0620],
                                         [0.5949, 1.5317, 0.8031],
                                         [-2.1828, -1.7826, -0.0620],
                                         [0.0640, 0.5401, 0.8031],
                                         [-2.7432, -3.4822, -0.0620],
                                         [0.8064, 0.7805, -0.5689],
                                         [-2.0260, -2.7765, -0.2612],
                                         [-0.1476, 1.2913, -0.5689],
                                         [-2.9000, -2.4883, -0.2612],
                                         [0.5949, 1.5317, -0.5689],
                                         [-2.1828, -1.7826, -0.2612],
                                         [0.0640, 0.5401, -0.5689],
                                         [-2.7432, -3.4822, -0.2612],
                                         [1.0719, 1.2762, 0.1171],
                                         [-1.7458, -1.9267, -0.1616],
                                         [0.5410, 0.2847, 0.1171],
                                         [-2.3062, -3.6263, -0.1616],
                                         [0.1178, 1.7871, 0.1171],
                                         [-2.6198, -1.6385, -0.1616],
                                         [-0.4131, 0.7956, 0.1171],
                                         [-3.1802, -3.3381, -0.1616]])

    assert torch.allclose(surface_center, expected_surface_center, atol=1e-04)
    assert torch.allclose(line_center, expected_line_center, atol=1e-04)

liyinhao's avatar
liyinhao committed
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

def test_rotation_3d_in_axis():
    points = torch.tensor([[[-0.4599, -0.0471, 0.0000],
                            [-0.4599, -0.0471, 1.8433],
                            [-0.4599, 0.0471, 1.8433]],
                           [[-0.2555, -0.2683, 0.0000],
                            [-0.2555, -0.2683, 0.9072],
                            [-0.2555, 0.2683, 0.9072]]])
    rotated = rotation_3d_in_axis(
        points, torch.tensor([-np.pi / 10, np.pi / 10]), axis=0)
    expected_rotated = torch.tensor([[[0.0000, -0.4228, -0.1869],
                                      [1.8433, -0.4228, -0.1869],
                                      [1.8433, -0.4519, -0.0973]],
                                     [[0.0000, -0.3259, -0.1762],
                                      [0.9072, -0.3259, -0.1762],
                                      [0.9072, -0.1601, 0.3341]]])
    assert torch.allclose(rotated, expected_rotated, 1e-3)


def test_limit_period():
    torch.manual_seed(0)
    val = torch.rand([5, 1])
    result = limit_period(val)
    expected_result = torch.tensor([[0.4963], [0.7682], [0.0885], [0.1320],
                                    [0.3074]])
    assert torch.allclose(result, expected_result, 1e-3)


def test_xywhr2xyxyr():
    torch.manual_seed(0)
    xywhr = torch.tensor([[1., 2., 3., 4., 5.], [0., 1., 2., 3., 4.]])
    xyxyr = xywhr2xyxyr(xywhr)
    expected_xyxyr = torch.tensor([[-0.5000, 0.0000, 2.5000, 4.0000, 5.0000],
                                   [-1.0000, -0.5000, 1.0000, 2.5000, 4.0000]])

    assert torch.allclose(xyxyr, expected_xyxyr)


class test_get_box_type(unittest.TestCase):

    def test_get_box_type(self):
        box_type_3d, box_mode_3d = get_box_type('camera')
        assert box_type_3d == CameraInstance3DBoxes
        assert box_mode_3d == Box3DMode.CAM

        box_type_3d, box_mode_3d = get_box_type('depth')
        assert box_type_3d == DepthInstance3DBoxes
        assert box_mode_3d == Box3DMode.DEPTH

        box_type_3d, box_mode_3d = get_box_type('lidar')
        assert box_type_3d == LiDARInstance3DBoxes
        assert box_mode_3d == Box3DMode.LIDAR

    def test_bad_box_type(self):
        self.assertRaises(ValueError, get_box_type, 'test')


def test_points_cam2img():
    torch.manual_seed(0)
    points = torch.rand([5, 3])
    proj_mat = torch.rand([4, 4])
    point_2d_res = points_cam2img(points, proj_mat)
    expected_point_2d_res = torch.tensor([[0.5832, 0.6496], [0.6146, 0.7910],
                                          [0.6994, 0.7782], [0.5623, 0.6303],
                                          [0.4359, 0.6532]])
    assert torch.allclose(point_2d_res, expected_point_2d_res, 1e-3)