parta2.py 7.01 KB
Newer Older
1
2
3
4
5
6
# model settings
voxel_size = [0.05, 0.05, 0.1]
point_cloud_range = [0, -40, -3, 70.4, 40, 1]

model = dict(
    type='PartA2',
7
    data_preprocessor=dict(type='Det3DDataPreprocessor'),
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    voxel_layer=dict(
        max_num_points=5,  # max_points_per_voxel
        point_cloud_range=point_cloud_range,
        voxel_size=voxel_size,
        max_voxels=(16000, 40000)  # (training, testing) max_voxels
    ),
    voxel_encoder=dict(type='HardSimpleVFE'),
    middle_encoder=dict(
        type='SparseUNet',
        in_channels=4,
        sparse_shape=[41, 1600, 1408],
        order=('conv', 'norm', 'act')),
    backbone=dict(
        type='SECOND',
        in_channels=256,
        layer_nums=[5, 5],
        layer_strides=[1, 2],
        out_channels=[128, 256]),
    neck=dict(
        type='SECONDFPN',
        in_channels=[128, 256],
        upsample_strides=[1, 2],
        out_channels=[256, 256]),
    rpn_head=dict(
        type='PartA2RPNHead',
        num_classes=3,
        in_channels=512,
        feat_channels=512,
        use_direction_classifier=True,
        anchor_generator=dict(
            type='Anchor3DRangeGenerator',
            ranges=[[0, -40.0, -0.6, 70.4, 40.0, -0.6],
                    [0, -40.0, -0.6, 70.4, 40.0, -0.6],
                    [0, -40.0, -1.78, 70.4, 40.0, -1.78]],
42
            sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]],
43
44
45
46
47
48
49
            rotations=[0, 1.57],
            reshape_out=False),
        diff_rad_by_sin=True,
        assigner_per_size=True,
        assign_per_class=True,
        bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
        loss_cls=dict(
50
            type='mmdet.FocalLoss',
51
52
53
54
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
55
56
        loss_bbox=dict(
            type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
57
        loss_dir=dict(
58
59
            type='mmdet.CrossEntropyLoss', use_sigmoid=False,
            loss_weight=0.2)),
60
61
62
63
64
65
66
67
68
69
    roi_head=dict(
        type='PartAggregationROIHead',
        num_classes=3,
        semantic_head=dict(
            type='PointwiseSemanticHead',
            in_channels=16,
            extra_width=0.2,
            seg_score_thr=0.3,
            num_classes=3,
            loss_seg=dict(
70
                type='mmdet.FocalLoss',
71
72
73
74
75
76
                use_sigmoid=True,
                reduction='sum',
                gamma=2.0,
                alpha=0.25,
                loss_weight=1.0),
            loss_part=dict(
77
78
79
                type='mmdet.CrossEntropyLoss',
                use_sigmoid=True,
                loss_weight=1.0)),
80
81
82
83
84
85
86
        seg_roi_extractor=dict(
            type='Single3DRoIAwareExtractor',
            roi_layer=dict(
                type='RoIAwarePool3d',
                out_size=14,
                max_pts_per_voxel=128,
                mode='max')),
87
        bbox_roi_extractor=dict(
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
            type='Single3DRoIAwareExtractor',
            roi_layer=dict(
                type='RoIAwarePool3d',
                out_size=14,
                max_pts_per_voxel=128,
                mode='avg')),
        bbox_head=dict(
            type='PartA2BboxHead',
            num_classes=3,
            seg_in_channels=16,
            part_in_channels=4,
            seg_conv_channels=[64, 64],
            part_conv_channels=[64, 64],
            merge_conv_channels=[128, 128],
            down_conv_channels=[128, 256],
            bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
            shared_fc_channels=[256, 512, 512, 512],
            cls_channels=[256, 256],
            reg_channels=[256, 256],
            dropout_ratio=0.1,
            roi_feat_size=14,
            with_corner_loss=True,
            loss_bbox=dict(
111
                type='mmdet.SmoothL1Loss',
112
113
114
115
                beta=1.0 / 9.0,
                reduction='sum',
                loss_weight=1.0),
            loss_cls=dict(
116
                type='mmdet.CrossEntropyLoss',
117
118
119
120
121
122
123
124
                use_sigmoid=True,
                reduction='sum',
                loss_weight=1.0))),
    # model training and testing settings
    train_cfg=dict(
        rpn=dict(
            assigner=[
                dict(  # for Pedestrian
125
                    type='Max3DIoUAssigner',
126
127
128
129
130
131
                    iou_calculator=dict(type='BboxOverlapsNearest3D'),
                    pos_iou_thr=0.5,
                    neg_iou_thr=0.35,
                    min_pos_iou=0.35,
                    ignore_iof_thr=-1),
                dict(  # for Cyclist
132
                    type='Max3DIoUAssigner',
133
134
135
136
137
138
                    iou_calculator=dict(type='BboxOverlapsNearest3D'),
                    pos_iou_thr=0.5,
                    neg_iou_thr=0.35,
                    min_pos_iou=0.35,
                    ignore_iof_thr=-1),
                dict(  # for Car
139
                    type='Max3DIoUAssigner',
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
                    iou_calculator=dict(type='BboxOverlapsNearest3D'),
                    pos_iou_thr=0.6,
                    neg_iou_thr=0.45,
                    min_pos_iou=0.45,
                    ignore_iof_thr=-1)
            ],
            allowed_border=0,
            pos_weight=-1,
            debug=False),
        rpn_proposal=dict(
            nms_pre=9000,
            nms_post=512,
            max_num=512,
            nms_thr=0.8,
            score_thr=0,
            use_rotate_nms=False),
        rcnn=dict(
            assigner=[
                dict(  # for Pedestrian
159
                    type='Max3DIoUAssigner',
160
161
162
163
164
165
166
                    iou_calculator=dict(
                        type='BboxOverlaps3D', coordinate='lidar'),
                    pos_iou_thr=0.55,
                    neg_iou_thr=0.55,
                    min_pos_iou=0.55,
                    ignore_iof_thr=-1),
                dict(  # for Cyclist
167
                    type='Max3DIoUAssigner',
168
169
170
171
172
173
174
                    iou_calculator=dict(
                        type='BboxOverlaps3D', coordinate='lidar'),
                    pos_iou_thr=0.55,
                    neg_iou_thr=0.55,
                    min_pos_iou=0.55,
                    ignore_iof_thr=-1),
                dict(  # for Car
175
                    type='Max3DIoUAssigner',
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
                    iou_calculator=dict(
                        type='BboxOverlaps3D', coordinate='lidar'),
                    pos_iou_thr=0.55,
                    neg_iou_thr=0.55,
                    min_pos_iou=0.55,
                    ignore_iof_thr=-1)
            ],
            sampler=dict(
                type='IoUNegPiecewiseSampler',
                num=128,
                pos_fraction=0.55,
                neg_piece_fractions=[0.8, 0.2],
                neg_iou_piece_thrs=[0.55, 0.1],
                neg_pos_ub=-1,
                add_gt_as_proposals=False,
                return_iou=True),
            cls_pos_thr=0.75,
            cls_neg_thr=0.25)),
    test_cfg=dict(
        rpn=dict(
            nms_pre=1024,
            nms_post=100,
            max_num=100,
            nms_thr=0.7,
            score_thr=0,
            use_rotate_nms=True),
        rcnn=dict(
            use_rotate_nms=True,
            use_raw_score=True,
            nms_thr=0.01,
            score_thr=0.1)))