local_visualizer.py 35.1 KB
Newer Older
ZCMax's avatar
ZCMax committed
1
2
3
4
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import Dict, List, Optional, Tuple, Union

5
import matplotlib.pyplot as plt
ZCMax's avatar
ZCMax committed
6
7
import mmcv
import numpy as np
8
9
10
from matplotlib.collections import PatchCollection
from matplotlib.patches import PathPatch
from matplotlib.path import Path
ZCMax's avatar
ZCMax committed
11
12
13
from mmengine.dist import master_only
from torch import Tensor

14
from mmdet3d.structures.bbox_3d.box_3d_mode import Box3DMode
zhangshilong's avatar
zhangshilong committed
15
16
from mmdet.visualization import DetLocalVisualizer

ZCMax's avatar
ZCMax committed
17
18
19
20
21
22
23
try:
    import open3d as o3d
    from open3d import geometry
except ImportError:
    raise ImportError(
        'Please run "pip install open3d" to install open3d first.')

24
from mmengine.structures import InstanceData
ZCMax's avatar
ZCMax committed
25
26
27
from mmengine.visualization.utils import check_type, tensor2ndarray

from mmdet3d.registry import VISUALIZERS
28
29
30
from mmdet3d.structures import (BaseInstance3DBoxes, CameraInstance3DBoxes,
                                Coord3DMode, DepthInstance3DBoxes,
                                Det3DDataSample, LiDARInstance3DBoxes,
31
                                PointData, points_cam2img)
ZCMax's avatar
ZCMax committed
32
from .vis_utils import (proj_camera_bbox3d_to_img, proj_depth_bbox3d_to_img,
33
                        proj_lidar_bbox3d_to_img, to_depth_mode)
ZCMax's avatar
ZCMax committed
34
35
36
37
38
39
40
41
42
43


@VISUALIZERS.register_module()
class Det3DLocalVisualizer(DetLocalVisualizer):
    """MMDetection3D Local Visualizer.

    - 3D detection and segmentation drawing methods

      - draw_bboxes_3d: draw 3D bounding boxes on point clouds
      - draw_proj_bboxes_3d: draw projected 3D bounding boxes on image
zhangshilong's avatar
zhangshilong committed
44
      - draw_seg_mask: draw segmentation mask via per-point colorization
ZCMax's avatar
ZCMax committed
45
46
47

    Args:
        name (str): Name of the instance. Defaults to 'visualizer'.
48
        points (numpy.array, shape=[N, 3+C]): points to visualize.
ZCMax's avatar
ZCMax committed
49
50
        image (np.ndarray, optional): the origin image to draw. The format
            should be RGB. Defaults to None.
51
52
53
        pcd_mode (int): The point cloud mode (coordinates):
            0 represents LiDAR, 1 represents CAMERA, 2
            represents Depth. Defaults to 0.
ZCMax's avatar
ZCMax committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        vis_backends (list, optional): Visual backend config list.
            Defaults to None.
        save_dir (str, optional): Save file dir for all storage backends.
            If it is None, the backend storage will not save any data.
        bbox_color (str, tuple(int), optional): Color of bbox lines.
            The tuple of color should be in BGR order. Defaults to None.
        text_color (str, tuple(int), optional): Color of texts.
            The tuple of color should be in BGR order.
            Defaults to (200, 200, 200).
        mask_color (str, tuple(int), optional): Color of masks.
            The tuple of color should be in BGR order.
            Defaults to None.
        line_width (int, float): The linewidth of lines.
            Defaults to 3.
68
        frame_cfg (dict): The coordinate frame config while Open3D
zhangshilong's avatar
zhangshilong committed
69
70
            visualization initialization.
            Defaults to dict(size=1, origin=[0, 0, 0]).
ZCMax's avatar
ZCMax committed
71
72
73
74
75
76
        alpha (int, float): The transparency of bboxes or mask.
                Defaults to 0.8.

    Examples:
        >>> import numpy as np
        >>> import torch
77
        >>> from mmengine.structures import InstanceData
zhangshilong's avatar
zhangshilong committed
78
79
        >>> from mmdet3d.structures import Det3DDataSample
        >>> from mmdet3d.visualization import Det3DLocalVisualizer
ZCMax's avatar
ZCMax committed
80
81
82
83

        >>> det3d_local_visualizer = Det3DLocalVisualizer()
        >>> image = np.random.randint(0, 256,
        ...                     size=(10, 12, 3)).astype('uint8')
zhangshilong's avatar
zhangshilong committed
84
        >>> points = np.random.rand((1000, ))
ZCMax's avatar
ZCMax committed
85
86
        >>> gt_instances_3d = InstanceData()
        >>> gt_instances_3d.bboxes_3d = BaseInstance3DBoxes(torch.rand((5, 7)))
zhangshilong's avatar
zhangshilong committed
87
        >>> gt_instances_3d.labels_3d = torch.randint(0, 2, (5,))
ZCMax's avatar
ZCMax committed
88
89
        >>> gt_det3d_data_sample = Det3DDataSample()
        >>> gt_det3d_data_sample.gt_instances_3d = gt_instances_3d
zhangshilong's avatar
zhangshilong committed
90
91
92
        >>> data_input = dict(img=image, points=points)
        >>> det3d_local_visualizer.add_datasample('3D Scene', data_input,
        ...                         gt_det3d_data_sample)
ZCMax's avatar
ZCMax committed
93
94
95
96
    """

    def __init__(self,
                 name: str = 'visualizer',
97
                 points: Optional[np.ndarray] = None,
ZCMax's avatar
ZCMax committed
98
                 image: Optional[np.ndarray] = None,
99
                 pcd_mode: int = 0,
ZCMax's avatar
ZCMax committed
100
101
102
103
104
105
106
                 vis_backends: Optional[Dict] = None,
                 save_dir: Optional[str] = None,
                 bbox_color: Optional[Union[str, Tuple[int]]] = None,
                 text_color: Optional[Union[str,
                                            Tuple[int]]] = (200, 200, 200),
                 mask_color: Optional[Union[str, Tuple[int]]] = None,
                 line_width: Union[int, float] = 3,
107
                 frame_cfg: dict = dict(size=1, origin=[0, 0, 0]),
ZCMax's avatar
ZCMax committed
108
109
110
111
112
113
114
115
116
117
118
                 alpha: float = 0.8):
        super().__init__(
            name=name,
            image=image,
            vis_backends=vis_backends,
            save_dir=save_dir,
            bbox_color=bbox_color,
            text_color=text_color,
            mask_color=mask_color,
            line_width=line_width,
            alpha=alpha)
119
120
121
        if points is not None:
            self.set_points(points, pcd_mode=pcd_mode, frame_cfg=frame_cfg)
        self.pts_seg_num = 0
ZCMax's avatar
ZCMax committed
122

123
124
125
126
127
128
129
130
131
    def _clear_o3d_vis(self) -> None:
        """Clear open3d vis."""

        if hasattr(self, 'o3d_vis'):
            del self.o3d_vis
            del self.pcd
            del self.points_colors

    def _initialize_o3d_vis(self, frame_cfg) -> o3d.visualization.Visualizer:
132
        """Initialize open3d vis according to frame_cfg.
ZCMax's avatar
ZCMax committed
133
134

        Args:
135
136
            frame_cfg (dict): The config to create coordinate frame
                in open3d vis.
ZCMax's avatar
ZCMax committed
137
138

        Returns:
139
            :obj:`o3d.visualization.Visualizer`: Created open3d vis.
ZCMax's avatar
ZCMax committed
140
141
142
143
        """
        o3d_vis = o3d.visualization.Visualizer()
        o3d_vis.create_window()
        # create coordinate frame
144
        mesh_frame = geometry.TriangleMesh.create_coordinate_frame(**frame_cfg)
ZCMax's avatar
ZCMax committed
145
146
147
148
149
150
        o3d_vis.add_geometry(mesh_frame)
        return o3d_vis

    @master_only
    def set_points(self,
                   points: np.ndarray,
151
                   pcd_mode: int = 0,
152
                   vis_mode: str = 'replace',
153
                   frame_cfg: dict = dict(size=1, origin=[0, 0, 0]),
ZCMax's avatar
ZCMax committed
154
155
156
157
158
159
160
161
                   points_color: Tuple = (0.5, 0.5, 0.5),
                   points_size: int = 2,
                   mode: str = 'xyz') -> None:
        """Set the points to draw.

        Args:
            points (numpy.array, shape=[N, 3+C]):
                points to visualize.
162
163
            pcd_mode (int): The point cloud mode (coordinates):
                0 represents LiDAR, 1 represents CAMERA, 2
164
                represents Depth. Defaults to 0.
165
166
167
168
169
170
            vis_mode (str): The visualization mode in Open3D:
                'replace': Replace the existing point cloud with
                    input point cloud.
                'add': Add input point cloud into existing point
                    cloud.
                Defaults to 'replace'.
171
172
173
            frame_cfg (dict): The coordinate frame config while Open3D
                visualization initialization.
                Defaults to dict(size=1, origin=[0, 0, 0]).
ZCMax's avatar
ZCMax committed
174
175
176
177
178
179
180
181
            point_color (tuple[float], optional): the color of points.
                Default: (0.5, 0.5, 0.5).
            points_size (int, optional): the size of points to show
                on visualizer. Default: 2.
            mode (str, optional):  indicate type of the input points,
                available mode ['xyz', 'xyzrgb']. Default: 'xyz'.
        """
        assert points is not None
182
        assert vis_mode in ('replace', 'add')
ZCMax's avatar
ZCMax committed
183
184
        check_type('points', points, np.ndarray)

185
186
187
        if not hasattr(self, 'o3d_vis'):
            self.o3d_vis = self._initialize_o3d_vis(frame_cfg)

188
189
190
191
        # for now we convert points into depth mode for visualization
        if pcd_mode != Coord3DMode.DEPTH:
            points = Coord3DMode.convert(points, pcd_mode, Coord3DMode.DEPTH)

192
        if hasattr(self, 'pcd') and vis_mode != 'add':
ZCMax's avatar
ZCMax committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
            self.o3d_vis.remove_geometry(self.pcd)

        # set points size in Open3D
        self.o3d_vis.get_render_option().point_size = points_size

        points = points.copy()
        pcd = geometry.PointCloud()
        if mode == 'xyz':
            pcd.points = o3d.utility.Vector3dVector(points[:, :3])
            points_colors = np.tile(
                np.array(points_color), (points.shape[0], 1))
        elif mode == 'xyzrgb':
            pcd.points = o3d.utility.Vector3dVector(points[:, :3])
            points_colors = points[:, 3:6]
            # normalize to [0, 1] for Open3D drawing
            if not ((points_colors >= 0.0) & (points_colors <= 1.0)).all():
                points_colors /= 255.0
        else:
            raise NotImplementedError

        pcd.colors = o3d.utility.Vector3dVector(points_colors)
        self.o3d_vis.add_geometry(pcd)
        self.pcd = pcd
216
        self.points_colors = points_colors
ZCMax's avatar
ZCMax committed
217
218
219
220
221

    # TODO: assign 3D Box color according to pred / GT labels
    # We draw GT / pred bboxes on the same point cloud scenes
    # for better detection performance comparison
    def draw_bboxes_3d(self,
222
                       bboxes_3d: BaseInstance3DBoxes,
ZCMax's avatar
ZCMax committed
223
224
225
226
227
228
229
230
231
                       bbox_color=(0, 1, 0),
                       points_in_box_color=(1, 0, 0),
                       rot_axis=2,
                       center_mode='lidar_bottom',
                       mode='xyz'):
        """Draw bbox on visualizer and change the color of points inside
        bbox3d.

        Args:
232
            bboxes_3d (:obj:`BaseInstance3DBoxes`, shape=[M, 7]):
ZCMax's avatar
ZCMax committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
                3d bbox (x, y, z, x_size, y_size, z_size, yaw) to visualize.
            bbox_color (tuple[float], optional): the color of 3D bboxes.
                Default: (0, 1, 0).
            points_in_box_color (tuple[float], optional):
                the color of points inside 3D bboxes. Default: (1, 0, 0).
            rot_axis (int, optional): rotation axis of 3D bboxes.
                Default: 2.
            center_mode (bool, optional): Indicates the center of bbox is
                bottom center or gravity center. available mode
                ['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'.
            mode (str, optional):  Indicates type of input points,
                available mode ['xyz', 'xyzrgb']. Default: 'xyz'.
        """
        # Before visualizing the 3D Boxes in point cloud scene
        # we need to convert the boxes to Depth mode
248
249
250
251
        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)

        if not isinstance(bboxes_3d, DepthInstance3DBoxes):
            bboxes_3d = bboxes_3d.convert_to(Box3DMode.DEPTH)
ZCMax's avatar
ZCMax committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

        # convert bboxes to numpy dtype
        bboxes_3d = tensor2ndarray(bboxes_3d.tensor)

        in_box_color = np.array(points_in_box_color)

        for i in range(len(bboxes_3d)):
            center = bboxes_3d[i, 0:3]
            dim = bboxes_3d[i, 3:6]
            yaw = np.zeros(3)
            yaw[rot_axis] = bboxes_3d[i, 6]
            rot_mat = geometry.get_rotation_matrix_from_xyz(yaw)

            if center_mode == 'lidar_bottom':
                # bottom center to gravity center
                center[rot_axis] += dim[rot_axis] / 2
            elif center_mode == 'camera_bottom':
                # bottom center to gravity center
                center[rot_axis] -= dim[rot_axis] / 2
            box3d = geometry.OrientedBoundingBox(center, rot_mat, dim)

            line_set = geometry.LineSet.create_from_oriented_bounding_box(
                box3d)
            line_set.paint_uniform_color(bbox_color)
            # draw bboxes on visualizer
            self.o3d_vis.add_geometry(line_set)

            # change the color of points which are in box
            if self.pcd is not None and mode == 'xyz':
                indices = box3d.get_point_indices_within_bounding_box(
                    self.pcd.points)
                self.points_colors[indices] = in_box_color

        # update points colors
        if self.pcd is not None:
            self.pcd.colors = o3d.utility.Vector3dVector(self.points_colors)
            self.o3d_vis.update_geometry(self.pcd)

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
    def set_bev_image(self,
                      bev_image: Optional[np.ndarray] = None,
                      bev_shape: Optional[int] = 900) -> None:
        """Set the bev image to draw.

        Args:
            bev_image (np.ndarray, optional): The bev image to draw.
                Defaults to None.
            bev_shape (int): The bev image shape. Defaults to 900.
        """
        if bev_image is None:
            bev_image = np.zeros((bev_shape, bev_shape, 3), np.uint8)

        self._image = bev_image
        self.width, self.height = bev_image.shape[1], bev_image.shape[0]
        self._default_font_size = max(
            np.sqrt(self.height * self.width) // 90, 10)
        self.ax_save.cla()
        self.ax_save.axis(False)
        self.ax_save.imshow(bev_image, origin='lower')
        # plot camera view range
        x1 = np.linspace(0, self.width / 2)
        x2 = np.linspace(self.width / 2, self.width)
        self.ax_save.plot(
            x1,
            self.width / 2 - x1,
            ls='--',
            color='grey',
            linewidth=1,
            alpha=0.5)
        self.ax_save.plot(
            x2,
            x2 - self.width / 2,
            ls='--',
            color='grey',
            linewidth=1,
            alpha=0.5)
        self.ax_save.plot(
            self.width / 2,
            0,
            marker='+',
            markersize=16,
            markeredgecolor='red')

    # TODO: Support bev point cloud visualization
    @master_only
    def draw_bev_bboxes(self,
                        bboxes_3d: BaseInstance3DBoxes,
                        scale: int = 15,
                        edge_colors: Union[str, tuple, List[str],
                                           List[tuple]] = 'o',
                        line_styles: Union[str, List[str]] = '-',
                        line_widths: Union[Union[int, float],
                                           List[Union[int, float]]] = 1,
                        face_colors: Union[str, tuple, List[str],
                                           List[tuple]] = 'none',
                        alpha: Union[int, float] = 1):
        """Draw projected 3D boxes on the image.

        Args:
            bboxes_3d (:obj:`BaseInstance3DBoxes`, shape=[M, 7]):
                3d bbox (x, y, z, x_size, y_size, z_size, yaw) to visualize.
            scale (dict): Value to scale the bev bboxes for better
                visualization. Defaults to 15.
            edge_colors (Union[str, tuple, List[str], List[tuple]]): The
                colors of bboxes. ``colors`` can have the same length with
                lines or just single value. If ``colors`` is single value, all
                the lines will have the same colors. Refer to `matplotlib.
                colors` for full list of formats that are accepted.
                Defaults to 'o'.
            line_styles (Union[str, List[str]]): The linestyle
                of lines. ``line_styles`` can have the same length with
                texts or just single value. If ``line_styles`` is single
                value, all the lines will have the same linestyle.
                Reference to
                https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
                for more details. Defaults to '-'.
            line_widths (Union[Union[int, float], List[Union[int, float]]]):
                The linewidth of lines. ``line_widths`` can have
                the same length with lines or just single value.
                If ``line_widths`` is single value, all the lines will
                have the same linewidth. Defaults to 2.
            face_colors (Union[str, tuple, List[str], List[tuple]]):
                The face colors. Default to 'none'.
            alpha (Union[int, float]): The transparency of bboxes.
                Defaults to 1.
        """

        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)
        bev_bboxes = tensor2ndarray(bboxes_3d.bev)
        # scale the bev bboxes for better visualization
        bev_bboxes[:, :4] *= scale
        ctr, w, h, theta = np.split(bev_bboxes, [2, 3, 4], axis=-1)
        cos_value, sin_value = np.cos(theta), np.sin(theta)
        vec1 = np.concatenate([w / 2 * cos_value, w / 2 * sin_value], axis=-1)
        vec2 = np.concatenate([-h / 2 * sin_value, h / 2 * cos_value], axis=-1)
        pt1 = ctr + vec1 + vec2
        pt2 = ctr + vec1 - vec2
        pt3 = ctr - vec1 - vec2
        pt4 = ctr - vec1 + vec2
        poly = np.stack([pt1, pt2, pt3, pt4], axis=-2)
        # move the object along x-axis
        poly[:, :, 0] += self.width / 2
        poly = [p for p in poly]
        return self.draw_polygons(
            poly,
            alpha=alpha,
            edge_colors=edge_colors,
            line_styles=line_styles,
            line_widths=line_widths,
            face_colors=face_colors)

    @master_only
    def draw_points_on_image(
            self,
            points: Union[np.ndarray, Tensor],
            pts2img: np.ndarray,
            sizes: Optional[Union[np.ndarray, Tensor, int]] = 10) -> None:
        """Draw projected points on the image.

        Args:
            positions (Union[np.ndarray, torch.Tensor]): Positions to draw.
            pts2imgs (np,ndarray): The transformatino matrix from the
                coordinate of point cloud to image plane.
            sizes (Optional[Union[np.ndarray, torch.Tensor, int]]): The
                marker size. Default to 10.
        """
        check_type('points', points, (np.ndarray, Tensor))
        points = tensor2ndarray(points)
        assert self._image is not None, 'Please set image using `set_image`'
        projected_points = points_cam2img(points, pts2img, with_depth=True)
        depths = projected_points[:, 2]
        colors = (depths % 20) / 20
        # use colormap to obtain the render color
        color_map = plt.get_cmap('jet')
        self.ax_save.scatter(
            projected_points[:, 0],
            projected_points[:, 1],
            c=colors,
            cmap=color_map,
            s=sizes,
            alpha=0.5,
            edgecolors='none')

434
    # TODO: set bbox color according to palette
435
    @master_only
ZCMax's avatar
ZCMax committed
436
437
438
    def draw_proj_bboxes_3d(self,
                            bboxes_3d: BaseInstance3DBoxes,
                            input_meta: dict,
439
440
                            edge_colors: Union[str, tuple, List[str],
                                               List[tuple]] = 'royalblue',
ZCMax's avatar
ZCMax committed
441
442
                            line_styles: Union[str, List[str]] = '-',
                            line_widths: Union[Union[int, float],
443
444
445
446
                                               List[Union[int, float]]] = 2,
                            face_colors: Union[str, tuple, List[str],
                                               List[tuple]] = 'royalblue',
                            alpha: Union[int, float] = 0.4):
ZCMax's avatar
ZCMax committed
447
448
449
450
451
452
        """Draw projected 3D boxes on the image.

        Args:
            bbox3d (:obj:`BaseInstance3DBoxes`, shape=[M, 7]):
                3d bbox (x, y, z, x_size, y_size, z_size, yaw) to visualize.
            input_meta (dict): Input meta information.
453
454
455
456
457
458
            edge_colors (Union[str, tuple, List[str], List[tuple]]): The
                colors of bboxes. ``colors`` can have the same length with
                lines or just single value. If ``colors`` is single value, all
                the lines will have the same colors. Refer to `matplotlib.
                colors` for full list of formats that are accepted.
                Defaults to 'royalblue'.
ZCMax's avatar
ZCMax committed
459
460
461
462
            line_styles (Union[str, List[str]]): The linestyle
                of lines. ``line_styles`` can have the same length with
                texts or just single value. If ``line_styles`` is single
                value, all the lines will have the same linestyle.
463
464
465
                Reference to
                https://matplotlib.org/stable/api/collections_api.html?highlight=collection#matplotlib.collections.AsteriskPolygonCollection.set_linestyle
                for more details. Defaults to '-'.
ZCMax's avatar
ZCMax committed
466
467
468
469
470
            line_widths (Union[Union[int, float], List[Union[int, float]]]):
                The linewidth of lines. ``line_widths`` can have
                the same length with lines or just single value.
                If ``line_widths`` is single value, all the lines will
                have the same linewidth. Defaults to 2.
471
472
473
474
            face_colors (Union[str, tuple, List[str], List[tuple]]):
                The face colors. Default to 'royalblue'.
            alpha (Union[int, float]): The transparency of bboxes.
                Defaults to 0.4.
ZCMax's avatar
ZCMax committed
475
476
477
478
        """

        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)

479
        if isinstance(bboxes_3d, DepthInstance3DBoxes):
ZCMax's avatar
ZCMax committed
480
            proj_bbox3d_to_img = proj_depth_bbox3d_to_img
481
        elif isinstance(bboxes_3d, LiDARInstance3DBoxes):
ZCMax's avatar
ZCMax committed
482
            proj_bbox3d_to_img = proj_lidar_bbox3d_to_img
483
        elif isinstance(bboxes_3d, CameraInstance3DBoxes):
ZCMax's avatar
ZCMax committed
484
485
            proj_bbox3d_to_img = proj_camera_bbox3d_to_img
        else:
486
            raise NotImplementedError('unsupported box type!')
ZCMax's avatar
ZCMax committed
487

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
        corners_2d = proj_bbox3d_to_img(bboxes_3d, input_meta)

        lines_verts_idx = [0, 1, 2, 3, 7, 6, 5, 4, 0, 3, 7, 4, 5, 1, 2, 6]
        lines_verts = corners_2d[:, lines_verts_idx, :]
        front_polys = corners_2d[:, 4:, :]
        codes = [Path.LINETO] * lines_verts.shape[1]
        codes[0] = Path.MOVETO
        pathpatches = []
        for i in range(len(corners_2d)):
            verts = lines_verts[i]
            pth = Path(verts, codes)
            pathpatches.append(PathPatch(pth))

        p = PatchCollection(
            pathpatches,
            facecolors='none',
            edgecolors=edge_colors,
            linewidths=line_widths,
            linestyles=line_styles)

        self.ax_save.add_collection(p)

        # draw a mask on the front of project bboxes
        front_polys = [front_poly for front_poly in front_polys]
        return self.draw_polygons(
            front_polys,
            alpha=alpha,
            edge_colors=edge_colors,
            line_styles=line_styles,
            line_widths=line_widths,
            face_colors=face_colors)
ZCMax's avatar
ZCMax committed
519

520
    @master_only
521
    def draw_seg_mask(self, seg_mask_colors: np.array):
ZCMax's avatar
ZCMax committed
522
523
524
525
526
527
528
529
530
531
        """Add segmentation mask to visualizer via per-point colorization.

        Args:
            seg_mask_colors (numpy.array, shape=[N, 6]):
                The segmentation mask whose first 3 dims are point coordinates
                and last 3 dims are converted colors.
        """
        # we can't draw the colors on existing points
        # in case gt and pred mask would overlap
        # instead we set a large offset along x-axis for each seg mask
532
        self.pts_seg_num += 1
ZCMax's avatar
ZCMax committed
533
        offset = (np.array(self.pcd.points).max(0) -
534
                  np.array(self.pcd.points).min(0))[0] * 1.2 * self.pts_seg_num
ZCMax's avatar
ZCMax committed
535
536
537
538
539
        mesh_frame = geometry.TriangleMesh.create_coordinate_frame(
            size=1, origin=[offset, 0, 0])  # create coordinate frame for seg
        self.o3d_vis.add_geometry(mesh_frame)
        seg_points = copy.deepcopy(seg_mask_colors)
        seg_points[:, 0] += offset
540
        self.set_points(seg_points, pcd_mode=2, vis_mode='add', mode='xyzrgb')
ZCMax's avatar
ZCMax committed
541
542
543
544
545
546
547
548
549
550
551
552

    def _draw_instances_3d(self, data_input: dict, instances: InstanceData,
                           input_meta: dict, vis_task: str,
                           palette: Optional[List[tuple]]):
        """Draw 3D instances of GT or prediction.

        Args:
            data_input (dict): The input dict to draw.
            instances (:obj:`InstanceData`): Data structure for
                instance-level annotations or predictions.
            metainfo (dict): Meta information.
            vis_task (str): Visualiztion task, it includes:
553
                'lidar_det', 'multi-modality_det', 'mono_det'.
ZCMax's avatar
ZCMax committed
554
555

        Returns:
556
            dict: the drawn point cloud and image which channel is RGB.
ZCMax's avatar
ZCMax committed
557
558
559
560
        """

        bboxes_3d = instances.bboxes_3d  # BaseInstance3DBoxes

561
        data_3d = dict()
ZCMax's avatar
ZCMax committed
562

563
        if vis_task in ['lidar_det', 'multi-modality_det']:
ZCMax's avatar
ZCMax committed
564
565
566
567
568
569
570
571
572
573
            assert 'points' in data_input
            points = data_input['points']
            check_type('points', points, (np.ndarray, Tensor))
            points = tensor2ndarray(points)

            if not isinstance(bboxes_3d, DepthInstance3DBoxes):
                points, bboxes_3d_depth = to_depth_mode(points, bboxes_3d)
            else:
                bboxes_3d_depth = bboxes_3d.clone()

574
            self.set_points(points, pcd_mode=2)
ZCMax's avatar
ZCMax committed
575
576
            self.draw_bboxes_3d(bboxes_3d_depth)

577
578
            data_3d['bboxes_3d'] = tensor2ndarray(bboxes_3d_depth.tensor)
            data_3d['points'] = points
ZCMax's avatar
ZCMax committed
579

580
        if vis_task in ['mono_det', 'multi-modality_det']:
ZCMax's avatar
ZCMax committed
581
            assert 'img' in data_input
582
            img = data_input['img']
zhangshilong's avatar
zhangshilong committed
583
            if isinstance(data_input['img'], Tensor):
584
                img = img.permute(1, 2, 0).numpy()
zhangshilong's avatar
zhangshilong committed
585
586
                img = img[..., [2, 1, 0]]  # bgr to rgb
            self.set_image(img)
ZCMax's avatar
ZCMax committed
587
            self.draw_proj_bboxes_3d(bboxes_3d, input_meta)
588
589
590
            if vis_task == 'mono_det' and hasattr(instances, 'centers_2d'):
                centers_2d = instances.centers_2d
                self.draw_points(centers_2d)
ZCMax's avatar
ZCMax committed
591
            drawn_img = self.get_image()
592
            data_3d['img'] = drawn_img
ZCMax's avatar
ZCMax committed
593
594
595
596

        return data_3d

    def _draw_pts_sem_seg(self,
597
                          points: Union[Tensor, np.ndarray],
zhangshilong's avatar
zhangshilong committed
598
                          pts_seg: PointData,
ZCMax's avatar
ZCMax committed
599
600
                          palette: Optional[List[tuple]] = None,
                          ignore_index: Optional[int] = None):
601
602
603
604
605
606
607
608
609
610
611
        """Draw 3D semantic mask of GT or prediction.

        Args:
            points (Tensor | np.ndarray): The input point
                cloud to draw.
            pts_seg (:obj:`PointData`): Data structure for
                pixel-level annotations or predictions.
            palette (List[tuple], optional): Palette information
                corresponding to the category. Defaults to None.
            ignore_index (int, optional): Ignore category.
                Defaults to None.
ZCMax's avatar
ZCMax committed
612

613
614
615
        Returns:
            dict: the drawn points with color.
        """
ZCMax's avatar
ZCMax committed
616
617
618
619
        check_type('points', points, (np.ndarray, Tensor))

        points = tensor2ndarray(points)
        pts_sem_seg = tensor2ndarray(pts_seg.pts_semantic_mask)
620
        palette = np.array(palette)
ZCMax's avatar
ZCMax committed
621
622
623
624
625
626
627
628

        if ignore_index is not None:
            points = points[pts_sem_seg != ignore_index]
            pts_sem_seg = pts_sem_seg[pts_sem_seg != ignore_index]

        pts_color = palette[pts_sem_seg]
        seg_color = np.concatenate([points[:, :3], pts_color], axis=1)

629
        self.set_points(points, pcd_mode=2, vis_mode='add')
630
        self.draw_seg_mask(seg_color)
ZCMax's avatar
ZCMax committed
631
632
633

    @master_only
    def show(self,
634
             save_path: Optional[str] = None,
ZCMax's avatar
ZCMax committed
635
636
637
638
639
             drawn_img_3d: Optional[np.ndarray] = None,
             drawn_img: Optional[np.ndarray] = None,
             win_name: str = 'image',
             wait_time: int = 0,
             continue_key=' ') -> None:
640
        """Show the drawn point cloud/image.
ZCMax's avatar
ZCMax committed
641
642

        Args:
643
644
            save_path (str, optional): Path to save open3d visualized results.
                Default: None.
ZCMax's avatar
ZCMax committed
645
646
647
648
649
650
651
652
653
            drawn_img (np.ndarray, optional): The image to show. If drawn_img
                is None, it will show the image got by Visualizer. Defaults
                to None.
            win_name (str):  The image title. Defaults to 'image'.
            wait_time (int): Delay in milliseconds. 0 is the special
                value that means "forever". Defaults to 0.
            continue_key (str): The key for users to continue. Defaults to
                the space key.
        """
654
        if hasattr(self, 'o3d_vis'):
ZCMax's avatar
ZCMax committed
655
            self.o3d_vis.run()
656
657
            if save_path is not None:
                self.o3d_vis.capture_screen_image(save_path)
ZCMax's avatar
ZCMax committed
658
            self.o3d_vis.destroy_window()
659
            self._clear_o3d_vis()
ZCMax's avatar
ZCMax committed
660

661
662
663
        if hasattr(self, '_image'):
            if drawn_img_3d is None:
                super().show(drawn_img_3d, win_name, wait_time, continue_key)
ZCMax's avatar
ZCMax committed
664
665
            super().show(drawn_img, win_name, wait_time, continue_key)

666
667
    # TODO: Support Visualize the 3D results from image and point cloud
    # respectively
ZCMax's avatar
ZCMax committed
668
669
670
671
    @master_only
    def add_datasample(self,
                       name: str,
                       data_input: dict,
672
                       data_sample: Optional['Det3DDataSample'] = None,
ZCMax's avatar
ZCMax committed
673
674
675
676
677
                       draw_gt: bool = True,
                       draw_pred: bool = True,
                       show: bool = False,
                       wait_time: float = 0,
                       out_file: Optional[str] = None,
678
                       o3d_save_path: Optional[str] = None,
679
                       vis_task: str = 'mono_det',
ZCMax's avatar
ZCMax committed
680
681
682
683
684
685
686
687
688
                       pred_score_thr: float = 0.3,
                       step: int = 0) -> None:
        """Draw datasample and save to all backends.

        - If GT and prediction are plotted at the same time, they are
        displayed in a stitched image where the left image is the
        ground truth and the right image is the prediction.
        - If ``show`` is True, all storage backends are ignored, and
        the images will be displayed in a local window.
689
690
        - If ``out_file`` is specified, the drawn image will be saved to
        ``out_file``. It is usually used when the display is not available.
ZCMax's avatar
ZCMax committed
691
692
693
694
695

        Args:
            name (str): The image identifier.
            data_input (dict): It should include the point clouds or image
                to draw.
696
            data_sample (:obj:`Det3DDataSample`, optional): Prediction
ZCMax's avatar
ZCMax committed
697
698
699
700
701
702
703
704
705
                Det3DDataSample. Defaults to None.
            draw_gt (bool): Whether to draw GT Det3DDataSample.
                Default to True.
            draw_pred (bool): Whether to draw Prediction Det3DDataSample.
                Defaults to True.
            show (bool): Whether to display the drawn point clouds and
                image. Default to False.
            wait_time (float): The interval of show (s). Defaults to 0.
            out_file (str): Path to output file. Defaults to None.
706
707
            o3d_save_path (str, optional): Path to save open3d visualized
                results Default: None.
708
            vis-task (str): Visualization task. Defaults to 'mono_det'.
ZCMax's avatar
ZCMax committed
709
710
711
712
713
714
715
716
717
            pred_score_thr (float): The threshold to visualize the bboxes
                and masks. Defaults to 0.3.
            step (int): Global step value to record. Defaults to 0.
        """
        classes = self.dataset_meta.get('CLASSES', None)
        # For object detection datasets, no PALETTE is saved
        palette = self.dataset_meta.get('PALETTE', None)
        ignore_index = self.dataset_meta.get('ignore_index', None)

718
719
720
721
722
        gt_data_3d = None
        pred_data_3d = None
        gt_img_data = None
        pred_img_data = None

723
724
725
726
727
728
        if draw_gt and data_sample is not None:
            if 'gt_instances_3d' in data_sample:
                gt_data_3d = self._draw_instances_3d(
                    data_input, data_sample.gt_instances_3d,
                    data_sample.metainfo, vis_task, palette)
            if 'gt_instances' in data_sample:
ChaimZhu's avatar
ChaimZhu committed
729
730
731
732
733
734
735
736
                if len(data_sample.gt_instances) > 0:
                    assert 'img' in data_input
                    if isinstance(data_input['img'], Tensor):
                        img = data_input['img'].permute(1, 2, 0).numpy()
                        img = img[..., [2, 1, 0]]  # bgr to rgb
                    gt_img_data = self._draw_instances(
                        img, data_sample.gt_instances, classes, palette)
            if 'gt_pts_seg' in data_sample and vis_task == 'seg':
ZCMax's avatar
ZCMax committed
737
738
739
740
741
                assert classes is not None, 'class information is ' \
                                            'not provided when ' \
                                            'visualizing panoptic ' \
                                            'segmentation results.'
                assert 'points' in data_input
742
743
744
                self._draw_pts_sem_seg(data_input['points'],
                                       data_sample.pred_pts_seg, palette,
                                       ignore_index)
ZCMax's avatar
ZCMax committed
745

746
747
748
        if draw_pred and data_sample is not None:
            if 'pred_instances_3d' in data_sample:
                pred_instances_3d = data_sample.pred_instances_3d
749
750
                # .cpu can not be used for BaseInstancesBoxes3D
                # so we need to use .to('cpu')
ZCMax's avatar
ZCMax committed
751
                pred_instances_3d = pred_instances_3d[
752
                    pred_instances_3d.scores_3d > pred_score_thr].to('cpu')
ZCMax's avatar
ZCMax committed
753
754
                pred_data_3d = self._draw_instances_3d(data_input,
                                                       pred_instances_3d,
755
                                                       data_sample.metainfo,
ZCMax's avatar
ZCMax committed
756
                                                       vis_task, palette)
757
758
759
            if 'pred_instances' in data_sample:
                if 'img' in data_input and len(data_sample.pred_instances) > 0:
                    pred_instances = data_sample.pred_instances
760
761
762
763
764
765
766
                    pred_instances = pred_instances_3d[
                        pred_instances.scores > pred_score_thr].cpu()
                    if isinstance(data_input['img'], Tensor):
                        img = data_input['img'].permute(1, 2, 0).numpy()
                        img = img[..., [2, 1, 0]]  # bgr to rgb
                    pred_img_data = self._draw_instances(
                        img, pred_instances, classes, palette)
767
            if 'pred_pts_seg' in data_sample and vis_task == 'lidar_seg':
ZCMax's avatar
ZCMax committed
768
769
770
771
772
                assert classes is not None, 'class information is ' \
                                            'not provided when ' \
                                            'visualizing panoptic ' \
                                            'segmentation results.'
                assert 'points' in data_input
773
774
775
                self._draw_pts_sem_seg(data_input['points'],
                                       data_sample.pred_pts_seg, palette,
                                       ignore_index)
ZCMax's avatar
ZCMax committed
776
777

        # monocular 3d object detection image
778
        if vis_task in ['mono_det', 'multi-modality_det']:
779
780
781
782
783
784
785
            if gt_data_3d is not None and pred_data_3d is not None:
                drawn_img_3d = np.concatenate(
                    (gt_data_3d['img'], pred_data_3d['img']), axis=1)
            elif gt_data_3d is not None:
                drawn_img_3d = gt_data_3d['img']
            elif pred_data_3d is not None:
                drawn_img_3d = pred_data_3d['img']
ZCMax's avatar
ZCMax committed
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
        else:
            drawn_img_3d = None

        # 2d object detection image
        if gt_img_data is not None and pred_img_data is not None:
            drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
        elif gt_img_data is not None:
            drawn_img = gt_img_data
        elif pred_img_data is not None:
            drawn_img = pred_img_data
        else:
            drawn_img = None

        if show:
            self.show(
801
                o3d_save_path,
ZCMax's avatar
ZCMax committed
802
803
804
805
806
807
808
                drawn_img_3d,
                drawn_img,
                win_name=name,
                wait_time=wait_time)

        if out_file is not None:
            if drawn_img_3d is not None:
809
                mmcv.imwrite(drawn_img_3d[..., ::-1], out_file)
ZCMax's avatar
ZCMax committed
810
            if drawn_img is not None:
811
                mmcv.imwrite(drawn_img[..., ::-1], out_file)
ZCMax's avatar
ZCMax committed
812
813
        else:
            self.add_image(name, drawn_img_3d, step)