petr_head.py 36.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from DETR3D (https://github.com/WangYueFt/detr3d)
# Copyright (c) 2021 Wang, Yue
# ------------------------------------------------------------------------
# Modified from mmdetection3d (https://github.com/open-mmlab/mmdetection3d)
# Copyright (c) OpenMMLab. All rights reserved.
# ------------------------------------------------------------------------
import math

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import Conv2d, Linear
from mmdet.models.dense_heads.anchor_free_head import AnchorFreeHead
from mmdet.models.layers import NormedLinear
from mmdet.models.layers.transformer import inverse_sigmoid
from mmdet.models.utils import multi_apply
from mmengine.model.weight_init import bias_init_with_prob
from mmengine.structures import InstanceData

from mmdet3d.registry import MODELS, TASK_UTILS
from projects.PETR.petr.utils import normalize_bbox


def pos2posemb3d(pos, num_pos_feats=128, temperature=10000):
    scale = 2 * math.pi
    pos = pos * scale
    dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos.device)
    dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats)
    pos_x = pos[..., 0, None] / dim_t
    pos_y = pos[..., 1, None] / dim_t
    pos_z = pos[..., 2, None] / dim_t
    pos_x = torch.stack((pos_x[..., 0::2].sin(), pos_x[..., 1::2].cos()),
                        dim=-1).flatten(-2)
    pos_y = torch.stack((pos_y[..., 0::2].sin(), pos_y[..., 1::2].cos()),
                        dim=-1).flatten(-2)
    pos_z = torch.stack((pos_z[..., 0::2].sin(), pos_z[..., 1::2].cos()),
                        dim=-1).flatten(-2)
    posemb = torch.cat((pos_y, pos_x, pos_z), dim=-1)
    return posemb


@MODELS.register_module()
class PETRHead(AnchorFreeHead):
    """Implements the DETR transformer head. See `paper: End-to-End Object
    Detection with Transformers.

    <https://arxiv.org/pdf/2005.12872>`_ for details.
    Args:
        num_classes (int): Number of categories excluding the background.
        in_channels (int): Number of channels in the input feature map.
        num_query (int): Number of query in Transformer.
        num_reg_fcs (int, optional): Number of fully-connected layers used in
            `FFN`, which is then used for the regression head. Default 2.
        transformer (obj:`mmcv.ConfigDict`|dict): Config for transformer.
            Default: None.
        sync_cls_avg_factor (bool): Whether to sync the avg_factor of
            all ranks. Default to False.
        positional_encoding (obj:`mmcv.ConfigDict`|dict):
            Config for position encoding.
        loss_cls (obj:`mmcv.ConfigDict`|dict): Config of the
            classification loss. Default `CrossEntropyLoss`.
        loss_bbox (obj:`mmcv.ConfigDict`|dict): Config of the
            regression loss. Default `L1Loss`.
        loss_iou (obj:`mmcv.ConfigDict`|dict): Config of the
            regression iou loss. Default `GIoULoss`.
        tran_cfg (obj:`mmcv.ConfigDict`|dict): Training config of
            transformer head.
        test_cfg (obj:`mmcv.ConfigDict`|dict): Testing config of
            transformer head.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """
    _version = 2

    def __init__(self,
                 num_classes,
                 in_channels,
                 num_query=100,
                 num_reg_fcs=2,
                 transformer=None,
                 sync_cls_avg_factor=False,
                 positional_encoding=dict(
                     type='SinePositionalEncoding',
                     num_feats=128,
                     normalize=True),
                 code_weights=None,
                 bbox_coder=None,
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     bg_cls_weight=0.1,
                     use_sigmoid=False,
                     loss_weight=1.0,
                     class_weight=1.0),
                 loss_bbox=dict(type='L1Loss', loss_weight=5.0),
                 loss_iou=dict(type='GIoULoss', loss_weight=2.0),
                 train_cfg=dict(
                     assigner=dict(
                         type='HungarianAssigner',
                         cls_cost=dict(type='ClassificationCost', weight=1.),
                         reg_cost=dict(type='BBoxL1Cost', weight=5.0),
                         iou_cost=dict(
                             type='IoUCost', iou_mode='giou', weight=2.0))),
                 test_cfg=dict(max_per_img=100),
                 with_position=True,
                 with_multiview=False,
                 depth_step=0.8,
                 depth_num=64,
                 LID=False,
                 depth_start=1,
                 position_range=[-65, -65, -8.0, 65, 65, 8.0],
                 init_cfg=None,
                 normedlinear=False,
                 **kwargs):
        # NOTE here use `AnchorFreeHead` instead of `TransformerHead`,
        # since it brings inconvenience when the initialization of
        # `AnchorFreeHead` is called.
        if 'code_size' in kwargs:
            self.code_size = kwargs['code_size']
        else:
            self.code_size = 10
        if code_weights is not None:
            self.code_weights = code_weights
        else:
            self.code_weights = [
                1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2
            ]
        self.code_weights = self.code_weights[:self.code_size]
        self.bg_cls_weight = 0
        self.sync_cls_avg_factor = sync_cls_avg_factor
        class_weight = loss_cls.get('class_weight', None)
        if class_weight is not None and (self.__class__ is PETRHead):
            assert isinstance(class_weight, float), 'Expected ' \
                'class_weight to have type float. Found ' \
                f'{type(class_weight)}.'
            # NOTE following the official DETR rep0, bg_cls_weight means
            # relative classification weight of the no-object class.
            bg_cls_weight = loss_cls.get('bg_cls_weight', class_weight)
            assert isinstance(bg_cls_weight, float), 'Expected ' \
                'bg_cls_weight to have type float. Found ' \
                f'{type(bg_cls_weight)}.'
            class_weight = torch.ones(num_classes + 1) * class_weight
            # set background class as the last indice
            class_weight[num_classes] = bg_cls_weight
            loss_cls.update({'class_weight': class_weight})
            if 'bg_cls_weight' in loss_cls:
                loss_cls.pop('bg_cls_weight')
            self.bg_cls_weight = bg_cls_weight

        if train_cfg:
            assert 'assigner' in train_cfg, 'assigner should be provided '\
                'when train_cfg is set.'
            assigner = train_cfg['assigner']
            assert loss_cls['loss_weight'] == assigner['cls_cost']['weight'], \
                'The classification weight for loss and matcher should be' \
                'exactly the same.'
            assert loss_bbox['loss_weight'] == assigner['reg_cost'][
                'weight'], 'The regression L1 weight for loss and matcher ' \
                'should be exactly the same.'
            # assert loss_iou['loss_weight'] == assigner['iou_cost'][
            #   'weight'], \
            # 'The regression iou weight for loss and matcher should be' \
            # 'exactly the same.'
            self.assigner = TASK_UTILS.build(assigner)
            # DETR sampling=False, so use PseudoSampler
            sampler_cfg = dict(type='PseudoSampler')
            self.sampler = TASK_UTILS.build(sampler_cfg)

        self.num_query = num_query
        self.num_classes = num_classes
        self.in_channels = in_channels
        self.num_reg_fcs = num_reg_fcs
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.fp16_enabled = False
        self.embed_dims = 256
        self.depth_step = depth_step
        self.depth_num = depth_num
        self.position_dim = 3 * self.depth_num
        self.position_range = position_range
        self.LID = LID
        self.depth_start = depth_start
        self.position_level = 0
        self.with_position = with_position
        self.with_multiview = with_multiview
        assert 'num_feats' in positional_encoding
        num_feats = positional_encoding['num_feats']
        assert num_feats * 2 == self.embed_dims, 'embed_dims should' \
            f' be exactly 2 times of num_feats. Found {self.embed_dims}' \
            f' and {num_feats}.'
        self.act_cfg = transformer.get('act_cfg',
                                       dict(type='ReLU', inplace=True))
        self.num_pred = 6
        self.normedlinear = normedlinear
        super(PETRHead, self).__init__(
            num_classes=num_classes,
            in_channels=in_channels,
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            bbox_coder=bbox_coder,
            init_cfg=init_cfg)

        self.loss_cls = MODELS.build(loss_cls)
        self.loss_bbox = MODELS.build(loss_bbox)
        self.loss_iou = MODELS.build(loss_iou)

        if self.loss_cls.use_sigmoid:
            self.cls_out_channels = num_classes
        else:
            self.cls_out_channels = num_classes + 1
        # self.activate = build_activation_layer(self.act_cfg)
        # if self.with_multiview or not self.with_position:
        #     self.positional_encoding = build_positional_encoding(
        #         positional_encoding)
        self.positional_encoding = TASK_UTILS.build(positional_encoding)
        self.transformer = MODELS.build(transformer)
        self.code_weights = nn.Parameter(
            torch.tensor(self.code_weights, requires_grad=False),
            requires_grad=False)
        self.bbox_coder = TASK_UTILS.build(bbox_coder)
        self.pc_range = self.bbox_coder.pc_range
        self._init_layers()

    def _init_layers(self):
        """Initialize layers of the transformer head."""
        if self.with_position:
            self.input_proj = Conv2d(
                self.in_channels, self.embed_dims, kernel_size=1)
        else:
            self.input_proj = Conv2d(
                self.in_channels, self.embed_dims, kernel_size=1)

        cls_branch = []
        for _ in range(self.num_reg_fcs):
            cls_branch.append(Linear(self.embed_dims, self.embed_dims))
            cls_branch.append(nn.LayerNorm(self.embed_dims))
            cls_branch.append(nn.ReLU(inplace=True))
        if self.normedlinear:
            cls_branch.append(
                NormedLinear(self.embed_dims, self.cls_out_channels))
        else:
            cls_branch.append(Linear(self.embed_dims, self.cls_out_channels))
        fc_cls = nn.Sequential(*cls_branch)

        reg_branch = []
        for _ in range(self.num_reg_fcs):
            reg_branch.append(Linear(self.embed_dims, self.embed_dims))
            reg_branch.append(nn.ReLU())
        reg_branch.append(Linear(self.embed_dims, self.code_size))
        reg_branch = nn.Sequential(*reg_branch)

        self.cls_branches = nn.ModuleList(
            [fc_cls for _ in range(self.num_pred)])
        self.reg_branches = nn.ModuleList(
            [reg_branch for _ in range(self.num_pred)])

        if self.with_multiview:
            self.adapt_pos3d = nn.Sequential(
                nn.Conv2d(
                    self.embed_dims * 3 // 2,
                    self.embed_dims * 4,
                    kernel_size=1,
                    stride=1,
                    padding=0),
                nn.ReLU(),
                nn.Conv2d(
                    self.embed_dims * 4,
                    self.embed_dims,
                    kernel_size=1,
                    stride=1,
                    padding=0),
            )
        else:
            self.adapt_pos3d = nn.Sequential(
                nn.Conv2d(
                    self.embed_dims,
                    self.embed_dims,
                    kernel_size=1,
                    stride=1,
                    padding=0),
                nn.ReLU(),
                nn.Conv2d(
                    self.embed_dims,
                    self.embed_dims,
                    kernel_size=1,
                    stride=1,
                    padding=0),
            )

        if self.with_position:
            self.position_encoder = nn.Sequential(
                nn.Conv2d(
                    self.position_dim,
                    self.embed_dims * 4,
                    kernel_size=1,
                    stride=1,
                    padding=0),
                nn.ReLU(),
                nn.Conv2d(
                    self.embed_dims * 4,
                    self.embed_dims,
                    kernel_size=1,
                    stride=1,
                    padding=0),
            )

        self.reference_points = nn.Embedding(self.num_query, 3)
        self.query_embedding = nn.Sequential(
            nn.Linear(self.embed_dims * 3 // 2, self.embed_dims),
            nn.ReLU(),
            nn.Linear(self.embed_dims, self.embed_dims),
        )

    def init_weights(self):
        """Initialize weights of the transformer head."""
        # The initialization for transformer is important
        self.transformer.init_weights()
        nn.init.uniform_(self.reference_points.weight.data, 0, 1)
        if self.loss_cls.use_sigmoid:
            bias_init = bias_init_with_prob(0.01)
            for m in self.cls_branches:
                nn.init.constant_(m[-1].bias, bias_init)

    def position_embeding(self, img_feats, img_metas, masks=None):
        eps = 1e-5
        pad_h, pad_w = img_metas[0]['pad_shape']
        B, N, C, H, W = img_feats[self.position_level].shape
        coords_h = torch.arange(
            H, device=img_feats[0].device).float() * pad_h / H
        coords_w = torch.arange(
            W, device=img_feats[0].device).float() * pad_w / W

        if self.LID:
            index = torch.arange(
                start=0,
                end=self.depth_num,
                step=1,
                device=img_feats[0].device).float()
            index_1 = index + 1
            bin_size = (self.position_range[3] - self.depth_start) / (
                self.depth_num * (1 + self.depth_num))
            coords_d = self.depth_start + bin_size * index * index_1
        else:
            index = torch.arange(
                start=0,
                end=self.depth_num,
                step=1,
                device=img_feats[0].device).float()
            bin_size = (self.position_range[3] -
                        self.depth_start) / self.depth_num
            coords_d = self.depth_start + bin_size * index

        D = coords_d.shape[0]
        coords = torch.stack(torch.meshgrid([coords_w, coords_h, coords_d
                                             ])).permute(1, 2, 3,
                                                         0)  # W, H, D, 3
        coords = torch.cat((coords, torch.ones_like(coords[..., :1])), -1)
        coords[..., :2] = coords[..., :2] * torch.maximum(
            coords[..., 2:3],
            torch.ones_like(coords[..., 2:3]) * eps)

        img2lidars = []
        for img_meta in img_metas:
            img2lidar = []
            for i in range(len(img_meta['lidar2img'])):
                img2lidar.append(np.linalg.inv(img_meta['lidar2img'][i]))
            img2lidars.append(np.asarray(img2lidar))
        img2lidars = np.asarray(img2lidars)
        img2lidars = coords.new_tensor(img2lidars)  # (B, N, 4, 4)

        coords = coords.view(1, 1, W, H, D, 4, 1).repeat(B, N, 1, 1, 1, 1, 1)
        img2lidars = img2lidars.view(B, N, 1, 1, 1, 4,
                                     4).repeat(1, 1, W, H, D, 1, 1)
        coords3d = torch.matmul(img2lidars, coords).squeeze(-1)[..., :3]
        coords3d[..., 0:1] = (coords3d[..., 0:1] - self.position_range[0]) / (
            self.position_range[3] - self.position_range[0])
        coords3d[..., 1:2] = (coords3d[..., 1:2] - self.position_range[1]) / (
            self.position_range[4] - self.position_range[1])
        coords3d[..., 2:3] = (coords3d[..., 2:3] - self.position_range[2]) / (
            self.position_range[5] - self.position_range[2])

        coords_mask = (coords3d > 1.0) | (coords3d < 0.0)
        coords_mask = coords_mask.flatten(-2).sum(-1) > (D * 0.5)
        coords_mask = masks | coords_mask.permute(0, 1, 3, 2)
        coords3d = coords3d.permute(0, 1, 4, 5, 3,
                                    2).contiguous().view(B * N, -1, H, W)
        coords3d = inverse_sigmoid(coords3d)
        coords_position_embeding = self.position_encoder(coords3d)

        return coords_position_embeding.view(B, N, self.embed_dims, H,
                                             W), coords_mask

    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        """load checkpoints."""
        # NOTE here use `AnchorFreeHead` instead of `TransformerHead`,
        # since `AnchorFreeHead._load_from_state_dict` should not be
        # called here. Invoking the default `Module._load_from_state_dict`
        # is enough.

        # Names of some parameters in has been changed.
        version = local_metadata.get('version', None)
        if (version is None or version < 2) and self.__class__ is PETRHead:
            convert_dict = {
                '.self_attn.': '.attentions.0.',
                # '.ffn.': '.ffns.0.',
                '.multihead_attn.': '.attentions.1.',
                '.decoder.norm.': '.decoder.post_norm.'
            }
            state_dict_keys = list(state_dict.keys())
            for k in state_dict_keys:
                for ori_key, convert_key in convert_dict.items():
                    if ori_key in k:
                        convert_key = k.replace(ori_key, convert_key)
                        state_dict[convert_key] = state_dict[k]
                        del state_dict[k]

        super(AnchorFreeHead,
              self)._load_from_state_dict(state_dict, prefix, local_metadata,
                                          strict, missing_keys,
                                          unexpected_keys, error_msgs)

    def forward(self, mlvl_feats, img_metas):
        """Forward function.

        Args:
            mlvl_feats (tuple[Tensor]): Features from the upstream
                network, each is a 5D-tensor with shape
                (B, N, C, H, W).
        Returns:
            all_cls_scores (Tensor): Outputs from the classification head, \
                shape [nb_dec, bs, num_query, cls_out_channels]. Note \
                cls_out_channels should includes background.
            all_bbox_preds (Tensor): Sigmoid outputs from the regression \
                head with normalized coordinate format \
                (cx, cy, w, l, cz, h, theta, vx, vy). \
                Shape [nb_dec, bs, num_query, 9].
        """

        x = mlvl_feats[0]
        batch_size, num_cams = x.size(0), x.size(1)
        input_img_h, input_img_w = img_metas[0]['pad_shape']
        masks = x.new_ones((batch_size, num_cams, input_img_h, input_img_w))
        for img_id in range(batch_size):
            for cam_id in range(num_cams):
449
                img_h, img_w = img_metas[img_id]['img_shape'][cam_id]
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
                masks[img_id, cam_id, :img_h, :img_w] = 0
        x = self.input_proj(x.flatten(0, 1))
        x = x.view(batch_size, num_cams, *x.shape[-3:])
        # interpolate masks to have the same spatial shape with x
        masks = F.interpolate(masks, size=x.shape[-2:]).to(torch.bool)

        if self.with_position:
            coords_position_embeding, _ = self.position_embeding(
                mlvl_feats, img_metas, masks)
            pos_embed = coords_position_embeding
            if self.with_multiview:
                sin_embed = self.positional_encoding(masks)
                sin_embed = self.adapt_pos3d(sin_embed.flatten(0, 1)).view(
                    x.size())
                pos_embed = pos_embed + sin_embed
            else:
                pos_embeds = []
                for i in range(num_cams):
                    xy_embed = self.positional_encoding(masks[:, i, :, :])
                    pos_embeds.append(xy_embed.unsqueeze(1))
                sin_embed = torch.cat(pos_embeds, 1)
                sin_embed = self.adapt_pos3d(sin_embed.flatten(0, 1)).view(
                    x.size())
                pos_embed = pos_embed + sin_embed
        else:
            if self.with_multiview:
                pos_embed = self.positional_encoding(masks)
                pos_embed = self.adapt_pos3d(pos_embed.flatten(0, 1)).view(
                    x.size())
            else:
                pos_embeds = []
                for i in range(num_cams):
                    pos_embed = self.positional_encoding(masks[:, i, :, :])
                    pos_embeds.append(pos_embed.unsqueeze(1))
                pos_embed = torch.cat(pos_embeds, 1)

        reference_points = self.reference_points.weight
        query_embeds = self.query_embedding(pos2posemb3d(reference_points))
        reference_points = reference_points.unsqueeze(0).repeat(
            batch_size, 1, 1)  # .sigmoid()

        outs_dec, _ = self.transformer(x, masks, query_embeds, pos_embed,
                                       self.reg_branches)
        outs_dec = torch.nan_to_num(outs_dec)
        outputs_classes = []
        outputs_coords = []
        for lvl in range(outs_dec.shape[0]):
            reference = inverse_sigmoid(reference_points.clone())
            assert reference.shape[-1] == 3
            outputs_class = self.cls_branches[lvl](outs_dec[lvl]).to(
                torch.float32)
            tmp = self.reg_branches[lvl](outs_dec[lvl]).to(torch.float32)

            tmp[..., 0:2] += reference[..., 0:2]
            tmp[..., 0:2] = tmp[..., 0:2].sigmoid()
            tmp[..., 4:5] += reference[..., 2:3]
            tmp[..., 4:5] = tmp[..., 4:5].sigmoid()

            outputs_coord = tmp
            outputs_classes.append(outputs_class)
            outputs_coords.append(outputs_coord)

        all_cls_scores = torch.stack(outputs_classes)
        all_bbox_preds = torch.stack(outputs_coords)

        all_bbox_preds[..., 0:1] = (
            all_bbox_preds[..., 0:1] * (self.pc_range[3] - self.pc_range[0]) +
            self.pc_range[0])
        all_bbox_preds[..., 1:2] = (
            all_bbox_preds[..., 1:2] * (self.pc_range[4] - self.pc_range[1]) +
            self.pc_range[1])
        all_bbox_preds[..., 4:5] = (
            all_bbox_preds[..., 4:5] * (self.pc_range[5] - self.pc_range[2]) +
            self.pc_range[2])

        outs = {
            'all_cls_scores': all_cls_scores,
            'all_bbox_preds': all_bbox_preds,
            'enc_cls_scores': None,
            'enc_bbox_preds': None,
        }
        return outs

    def _get_target_single(self,
                           cls_score,
                           bbox_pred,
                           gt_labels,
                           gt_bboxes,
                           gt_bboxes_ignore=None):
        """"Compute regression and classification targets for one image.
        Outputs from a single decoder layer of a single feature level are used.
        Args:
            cls_score (Tensor): Box score logits from a single decoder layer
                for one image. Shape [num_query, cls_out_channels].
            bbox_pred (Tensor): Sigmoid outputs from a single decoder layer
                for one image, with normalized coordinate (cx, cy, w, h) and
                shape [num_query, 4].
            gt_bboxes (Tensor): Ground truth bboxes for one image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (Tensor): Ground truth class indices for one image
                with shape (num_gts, ).
            gt_bboxes_ignore (Tensor, optional): Bounding boxes
                which can be ignored. Default None.
        Returns:
            tuple[Tensor]: a tuple containing the following for one image.
                - labels (Tensor): Labels of each image.
                - label_weights (Tensor]): Label weights of each image.
                - bbox_targets (Tensor): BBox targets of each image.
                - bbox_weights (Tensor): BBox weights of each image.
                - pos_inds (Tensor): Sampled positive indices for each image.
                - neg_inds (Tensor): Sampled negative indices for each image.
        """

        num_bboxes = bbox_pred.size(0)
        # assigner and sampler
        assign_result = self.assigner.assign(bbox_pred, cls_score, gt_bboxes,
                                             gt_labels, gt_bboxes_ignore)
        pred_instance_3d = InstanceData(priors=bbox_pred)
        gt_instances_3d = InstanceData(bboxes_3d=gt_bboxes)
        sampling_result = self.sampler.sample(assign_result, pred_instance_3d,
                                              gt_instances_3d)
        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds

        # label targets
        labels = gt_bboxes.new_full((num_bboxes, ),
                                    self.num_classes,
                                    dtype=torch.long)
        labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
        label_weights = gt_bboxes.new_ones(num_bboxes)

        # bbox targets
        code_size = gt_bboxes.size(1)
        bbox_targets = torch.zeros_like(bbox_pred)[..., :code_size]
        bbox_weights = torch.zeros_like(bbox_pred)
        bbox_weights[pos_inds] = 1.0
        # DETR
        bbox_targets[pos_inds] = sampling_result.pos_gt_bboxes
        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                neg_inds)

    def get_targets(self,
                    cls_scores_list,
                    bbox_preds_list,
                    gt_bboxes_list,
                    gt_labels_list,
                    gt_bboxes_ignore_list=None):
        """"Compute regression and classification targets for a batch image.
        Outputs from a single decoder layer of a single feature level are used.
        Args:
            cls_scores_list (list[Tensor]): Box score logits from a single
                decoder layer for each image with shape [num_query,
                cls_out_channels].
            bbox_preds_list (list[Tensor]): Sigmoid outputs from a single
                decoder layer for each image, with normalized coordinate
                (cx, cy, w, h) and shape [num_query, 4].
            gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
                with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels_list (list[Tensor]): Ground truth class indices for each
                image with shape (num_gts, ).
            gt_bboxes_ignore_list (list[Tensor], optional): Bounding
                boxes which can be ignored for each image. Default None.
        Returns:
            tuple: a tuple containing the following targets.
                - labels_list (list[Tensor]): Labels for all images.
                - label_weights_list (list[Tensor]): Label weights for all \
                    images.
                - bbox_targets_list (list[Tensor]): BBox targets for all \
                    images.
                - bbox_weights_list (list[Tensor]): BBox weights for all \
                    images.
                - num_total_pos (int): Number of positive samples in all \
                    images.
                - num_total_neg (int): Number of negative samples in all \
                    images.
        """
        assert gt_bboxes_ignore_list is None, \
            'Only supports for gt_bboxes_ignore setting to None.'
        num_imgs = len(cls_scores_list)
        gt_bboxes_ignore_list = [
            gt_bboxes_ignore_list for _ in range(num_imgs)
        ]
        gt_labels_list = gt_labels_list[0]
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         pos_inds_list,
         neg_inds_list) = multi_apply(self._get_target_single, cls_scores_list,
                                      bbox_preds_list, gt_labels_list,
                                      gt_bboxes_list, gt_bboxes_ignore_list)
        num_total_pos = sum((inds.numel() for inds in pos_inds_list))
        num_total_neg = sum((inds.numel() for inds in neg_inds_list))
        return (labels_list, label_weights_list, bbox_targets_list,
                bbox_weights_list, num_total_pos, num_total_neg)

    def loss_by_feat_single(self,
                            cls_scores,
                            bbox_preds,
                            gt_bboxes_list,
                            gt_labels_list,
                            gt_bboxes_ignore_list=None):
        """"Loss function for outputs from a single decoder layer of a single
        feature level.

        Args:
            cls_scores (Tensor): Box score logits from a single decoder layer
                for all images. Shape [bs, num_query, cls_out_channels].
            bbox_preds (Tensor): Sigmoid outputs from a single decoder layer
                for all images, with normalized coordinate (cx, cy, w, h) and
                shape [bs, num_query, 4].
            gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
                with shape (num_gts, 4) in
                [tl_x, tl_y, br_x,loss_by_feat_single br_y] format.
            gt_labels_list (list[Tensor]): Ground truth class indices for each
                image with shape (num_gts, ).
            gt_bboxes_ignore_list (list[Tensor], optional): Bounding
                boxes which can be ignored for each image. Default None.
        Returns:
            dict[str, Tensor]: A dictionary of loss components for outputs
                from a single decoder layer.
        """
        num_imgs = cls_scores.size(0)
        cls_scores_list = [cls_scores[i] for i in range(num_imgs)]
        bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)]
        cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list,
                                           gt_bboxes_list, gt_labels_list,
                                           gt_bboxes_ignore_list)
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_pos, num_total_neg) = cls_reg_targets
        labels = torch.cat(labels_list, 0)
        label_weights = torch.cat(label_weights_list, 0)
        bbox_targets = torch.cat(bbox_targets_list, 0)

        bbox_weights = torch.cat(bbox_weights_list, 0)

        # classification loss
        cls_scores = cls_scores.reshape(-1, self.cls_out_channels)
        # construct weighted avg_factor to match with the official DETR repo
        cls_avg_factor = num_total_pos * 1.0 + \
            num_total_neg * self.bg_cls_weight
        # if self.sync_cls_avg_factor:
        #     cls_avg_factor = reduce_mean(
        #         cls_scores.new_tensor([cls_avg_factor]))

        cls_avg_factor = max(cls_avg_factor, 1)
        loss_cls = self.loss_cls(
            cls_scores, labels, label_weights, avg_factor=cls_avg_factor)

        # Compute the average number of gt boxes across all gpus, for
        # normalization purposes
        num_total_pos = loss_cls.new_tensor([num_total_pos])
        # num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()
        num_total_pos = torch.clamp(num_total_pos, min=1).item()

        # regression L1 loss
        bbox_preds = bbox_preds.reshape(-1, bbox_preds.size(-1))
        normalized_bbox_targets = normalize_bbox(bbox_targets, self.pc_range)
        isnotnan = torch.isfinite(normalized_bbox_targets).all(dim=-1)
        bbox_weights = bbox_weights * self.code_weights

        loss_bbox = self.loss_bbox(
            bbox_preds[isnotnan, :10],
            normalized_bbox_targets[isnotnan, :10],
            bbox_weights[isnotnan, :10],
            avg_factor=num_total_pos)

        loss_cls = torch.nan_to_num(loss_cls)
        loss_bbox = torch.nan_to_num(loss_bbox)
        return loss_cls, loss_bbox

    def loss_by_feat(self,
                     gt_bboxes_list,
                     gt_labels_list,
                     preds_dicts,
                     gt_bboxes_ignore=None):
        """"Loss function.
        Args:
            gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
                with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels_list (list[Tensor]): Ground truth class indices for each
                image with shape (num_gts, ).
            preds_dicts:
                all_cls_scores (Tensor): Classification score of all
                    decoder layers, has shape
                    [nb_dec, bs, num_query, cls_out_channels].
                all_bbox_preds (Tensor): Sigmoid regression
                    outputs of all decode layers. Each is a 4D-tensor with
                    normalized coordinate format (cx, cy, w, h) and shape
                    [nb_dec, bs, num_query, 4].
                enc_cls_scores (Tensor): Classification scores of
                    points on encode feature map , has shape
                    (N, h*w, num_classes). Only be passed when as_two_stage is
                    True, otherwise is None.
                enc_bbox_preds (Tensor): Regression results of each points
                    on the encode feature map, has shape (N, h*w, 4). Only be
                    passed when as_two_stage is True, otherwise is None.
            gt_bboxes_ignore (list[Tensor], optional): Bounding boxes
                which can be ignored for each image. Default None.
        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert gt_bboxes_ignore is None, \
            f'{self.__class__.__name__} only supports ' \
            f'for gt_bboxes_ignore setting to None.'

        all_cls_scores = preds_dicts['all_cls_scores']
        all_bbox_preds = preds_dicts['all_bbox_preds']
        enc_cls_scores = preds_dicts['enc_cls_scores']
        enc_bbox_preds = preds_dicts['enc_bbox_preds']

        num_dec_layers = len(all_cls_scores)
        device = gt_labels_list[0].device

        gt_bboxes_list = [
            torch.cat((gt_bboxes.gravity_center, gt_bboxes.tensor[:, 3:]),
                      dim=1).to(device) for gt_bboxes in gt_bboxes_list
        ]

        all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)]
        all_gt_labels_list = [[gt_labels_list] for _ in range(num_dec_layers)]
        all_gt_bboxes_ignore_list = [
            gt_bboxes_ignore for _ in range(num_dec_layers)
        ]

        losses_cls, losses_bbox = multi_apply(self.loss_by_feat_single,
                                              all_cls_scores, all_bbox_preds,
                                              all_gt_bboxes_list,
                                              all_gt_labels_list,
                                              all_gt_bboxes_ignore_list)

        loss_dict = dict()
        # loss of proposal generated from encode feature map.
        if enc_cls_scores is not None:
            binary_labels_list = [
                torch.zeros_like(gt_labels_list[i])
                for i in range(len(all_gt_labels_list))
            ]
            enc_loss_cls, enc_losses_bbox = \
                self.loss_single(enc_cls_scores, enc_bbox_preds,
                                 gt_bboxes_list, binary_labels_list,
                                 gt_bboxes_ignore)
            loss_dict['enc_loss_cls'] = enc_loss_cls
            loss_dict['enc_loss_bbox'] = enc_losses_bbox

        # loss from the last decoder layer
        loss_dict['loss_cls'] = losses_cls[-1]
        loss_dict['loss_bbox'] = losses_bbox[-1]

        # loss from other decoder layers
        num_dec_layer = 0
        for loss_cls_i, loss_bbox_i in zip(losses_cls[:-1], losses_bbox[:-1]):
            loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
            loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i
            num_dec_layer += 1
        return loss_dict

    def get_bboxes(self, preds_dicts, img_metas, rescale=False):
        """Generate bboxes from bbox head predictions.

        Args:
            preds_dicts (tuple[list[dict]]): Prediction results.
            img_metas (list[dict]): Point cloud and image's meta info.
        Returns:
            list[dict]: Decoded bbox, scores and labels after nms.
        """
        preds_dicts = self.bbox_coder.decode(preds_dicts)
        num_samples = len(preds_dicts)

        ret_list = []
        for i in range(num_samples):
            preds = preds_dicts[i]
            bboxes = preds['bboxes']
            bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 5] * 0.5
            bboxes = img_metas[i]['box_type_3d'](bboxes, bboxes.size(-1))
            scores = preds['scores']
            labels = preds['labels']
            ret_list.append([bboxes, scores, labels])
        return ret_list