minkunet_backbone.py 10.2 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
import warnings
from functools import partial
4
5
from typing import List

6
import torch
7
8
9
10
from mmengine.model import BaseModule
from mmengine.registry import MODELS
from torch import Tensor, nn

11
12
13
14
15
16
17
18
from mmdet3d.models.layers.minkowski_engine_block import (
    IS_MINKOWSKI_ENGINE_AVAILABLE, MinkowskiBasicBlock, MinkowskiBottleneck,
    MinkowskiConvModule)
from mmdet3d.models.layers.sparse_block import (SparseBasicBlock,
                                                SparseBottleneck,
                                                make_sparse_convmodule,
                                                replace_feature)
from mmdet3d.models.layers.spconv import IS_SPCONV2_AVAILABLE
19
from mmdet3d.models.layers.torchsparse import IS_TORCHSPARSE_AVAILABLE
20
21
22
from mmdet3d.models.layers.torchsparse_block import (TorchSparseBasicBlock,
                                                     TorchSparseBottleneck,
                                                     TorchSparseConvModule)
23
24
from mmdet3d.utils import OptMultiConfig

25
26
27
28
29
if IS_SPCONV2_AVAILABLE:
    from spconv.pytorch import SparseConvTensor
else:
    from mmcv.ops import SparseConvTensor

30
31
if IS_TORCHSPARSE_AVAILABLE:
    import torchsparse
32
33
34

if IS_MINKOWSKI_ENGINE_AVAILABLE:
    import MinkowskiEngine as ME
35
36
37
38
39
40
41
42
43
44
45
46
47


@MODELS.register_module()
class MinkUNetBackbone(BaseModule):
    r"""MinkUNet backbone with TorchSparse backend.

    Refer to `implementation code <https://github.com/mit-han-lab/spvnas>`_.

    Args:
        in_channels (int): Number of input voxel feature channels.
            Defaults to 4.
        base_channels (int): The input channels for first encoder layer.
            Defaults to 32.
48
49
        num_stages (int): Number of stages in encoder and decoder.
            Defaults to 4.
50
51
        encoder_channels (List[int]): Convolutional channels of each encode
            layer. Defaults to [32, 64, 128, 256].
52
        encoder_blocks (List[int]): Number of blocks in each encode layer.
53
54
        decoder_channels (List[int]): Convolutional channels of each decode
            layer. Defaults to [256, 128, 96, 96].
55
56
57
        decoder_blocks (List[int]): Number of blocks in each decode layer.
        block_type (str): Type of block in encoder and decoder.
        sparseconv_backend (str): Sparse convolutional backend.
58
59
60
61
62
63
64
        init_cfg (dict or :obj:`ConfigDict` or List[dict or :obj:`ConfigDict`]
            , optional): Initialization config dict.
    """

    def __init__(self,
                 in_channels: int = 4,
                 base_channels: int = 32,
65
                 num_stages: int = 4,
66
                 encoder_channels: List[int] = [32, 64, 128, 256],
67
                 encoder_blocks: List[int] = [2, 2, 2, 2],
68
                 decoder_channels: List[int] = [256, 128, 96, 96],
69
70
71
                 decoder_blocks: List[int] = [2, 2, 2, 2],
                 block_type: str = 'basic',
                 sparseconv_backend: str = 'torchsparse',
72
73
74
                 init_cfg: OptMultiConfig = None) -> None:
        super().__init__(init_cfg)
        assert num_stages == len(encoder_channels) == len(decoder_channels)
75
76
77
        assert sparseconv_backend in [
            'torchsparse', 'spconv', 'minkowski'
        ], f'sparseconv backend: {sparseconv_backend} not supported.'
78
        self.num_stages = num_stages
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        self.sparseconv_backend = sparseconv_backend
        if sparseconv_backend == 'torchsparse':
            assert IS_TORCHSPARSE_AVAILABLE, \
                'Please follow `get_started.md` to install Torchsparse.`'
            input_conv = TorchSparseConvModule
            encoder_conv = TorchSparseConvModule
            decoder_conv = TorchSparseConvModule
            residual_block = TorchSparseBasicBlock if block_type == 'basic' \
                else TorchSparseBottleneck
            # for torchsparse, residual branch will be implemented internally
            residual_branch = None
        elif sparseconv_backend == 'spconv':
            if not IS_SPCONV2_AVAILABLE:
                warnings.warn('Spconv 2.x is not available,'
                              'turn to use spconv 1.x in mmcv.')
            input_conv = partial(
                make_sparse_convmodule, conv_type='SubMConv3d')
            encoder_conv = partial(
                make_sparse_convmodule, conv_type='SparseConv3d')
            decoder_conv = partial(
                make_sparse_convmodule, conv_type='SparseInverseConv3d')
            residual_block = SparseBasicBlock if block_type == 'basic' \
                else SparseBottleneck
            residual_branch = partial(
                make_sparse_convmodule,
                conv_type='SubMConv3d',
                order=('conv', 'norm'))
        elif sparseconv_backend == 'minkowski':
            assert IS_MINKOWSKI_ENGINE_AVAILABLE, \
                'Please follow `get_started.md` to install Minkowski Engine.`'
            input_conv = MinkowskiConvModule
            encoder_conv = MinkowskiConvModule
            decoder_conv = partial(
                MinkowskiConvModule,
                conv_cfg=dict(type='MinkowskiConvNdTranspose'))
            residual_block = MinkowskiBasicBlock if block_type == 'basic' \
                else MinkowskiBottleneck
            residual_branch = partial(MinkowskiConvModule, act_cfg=None)

118
        self.conv_input = nn.Sequential(
119
120
121
122
123
124
125
126
127
128
129
130
131
            input_conv(
                in_channels,
                base_channels,
                kernel_size=3,
                padding=1,
                indice_key='subm0'),
            input_conv(
                base_channels,
                base_channels,
                kernel_size=3,
                padding=1,
                indice_key='subm0'))

132
133
134
135
        self.encoder = nn.ModuleList()
        self.decoder = nn.ModuleList()
        encoder_channels.insert(0, base_channels)
        decoder_channels.insert(0, encoder_channels[-1])
136

137
        for i in range(num_stages):
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
            encoder_layer = [
                encoder_conv(
                    encoder_channels[i],
                    encoder_channels[i],
                    kernel_size=2,
                    stride=2,
                    indice_key=f'spconv{i+1}')
            ]
            for j in range(encoder_blocks[i]):
                if j == 0 and encoder_channels[i] != encoder_channels[i + 1]:
                    encoder_layer.append(
                        residual_block(
                            encoder_channels[i],
                            encoder_channels[i + 1],
                            downsample=residual_branch(
                                encoder_channels[i],
                                encoder_channels[i + 1],
                                kernel_size=1)
                            if residual_branch is not None else None,
                            indice_key=f'subm{i+1}'))
                else:
                    encoder_layer.append(
                        residual_block(
                            encoder_channels[i + 1],
                            encoder_channels[i + 1],
                            indice_key=f'subm{i+1}'))
            self.encoder.append(nn.Sequential(*encoder_layer))
165

166
167
168
169
170
171
172
173
174
175
176
177
178
            decoder_layer = [
                decoder_conv(
                    decoder_channels[i],
                    decoder_channels[i + 1],
                    kernel_size=2,
                    stride=2,
                    transposed=True,
                    indice_key=f'spconv{num_stages-i}')
            ]
            for j in range(decoder_blocks[i]):
                if j == 0:
                    decoder_layer.append(
                        residual_block(
179
180
                            decoder_channels[i + 1] + encoder_channels[-2 - i],
                            decoder_channels[i + 1],
181
182
183
184
185
186
187
188
189
190
                            downsample=residual_branch(
                                decoder_channels[i + 1] +
                                encoder_channels[-2 - i],
                                decoder_channels[i + 1],
                                kernel_size=1)
                            if residual_branch is not None else None,
                            indice_key=f'subm{num_stages-i-1}'))
                else:
                    decoder_layer.append(
                        residual_block(
191
192
                            decoder_channels[i + 1],
                            decoder_channels[i + 1],
193
194
195
196
197
                            indice_key=f'subm{num_stages-i-1}'))
            self.decoder.append(
                nn.ModuleList(
                    [decoder_layer[0],
                     nn.Sequential(*decoder_layer[1:])]))
198

199
    def forward(self, voxel_features: Tensor, coors: Tensor) -> Tensor:
200
201
202
203
204
205
206
207
        """Forward function.

        Args:
            voxel_features (Tensor): Voxel features in shape (N, C).
            coors (Tensor): Coordinates in shape (N, 4),
                the columns in the order of (x_idx, y_idx, z_idx, batch_idx).

        Returns:
208
            Tensor: Backbone features.
209
        """
210
211
212
213
214
215
216
217
218
219
        if self.sparseconv_backend == 'torchsparse':
            x = torchsparse.SparseTensor(voxel_features, coors)
        elif self.sparseconv_backend == 'spconv':
            spatial_shape = coors.max(0)[0][1:] + 1
            batch_size = int(coors[-1, 0]) + 1
            x = SparseConvTensor(voxel_features, coors, spatial_shape,
                                 batch_size)
        elif self.sparseconv_backend == 'minkowski':
            x = ME.SparseTensor(voxel_features, coors)

220
221
222
223
224
225
226
227
228
229
        x = self.conv_input(x)
        laterals = [x]
        for encoder_layer in self.encoder:
            x = encoder_layer(x)
            laterals.append(x)
        laterals = laterals[:-1][::-1]

        decoder_outs = []
        for i, decoder_layer in enumerate(self.decoder):
            x = decoder_layer[0](x)
230
231
232
233
234
235
236
237
238

            if self.sparseconv_backend == 'torchsparse':
                x = torchsparse.cat((x, laterals[i]))
            elif self.sparseconv_backend == 'spconv':
                x = replace_feature(
                    x, torch.cat((x.features, laterals[i].features), dim=1))
            elif self.sparseconv_backend == 'minkowski':
                x = ME.cat(x, laterals[i])

239
240
241
            x = decoder_layer[1](x)
            decoder_outs.append(x)

242
243
244
245
        if self.sparseconv_backend == 'spconv':
            return decoder_outs[-1].features
        else:
            return decoder_outs[-1].F