convert_utils.py 15.7 KB
Newer Older
ZCMax's avatar
ZCMax committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import copy
ZCMax's avatar
ZCMax committed
3
from collections import OrderedDict
4
from typing import List, Optional, Tuple, Union
ZCMax's avatar
ZCMax committed
5
6
7
8
9
10

import numpy as np
from nuscenes.utils.geometry_utils import view_points
from pyquaternion import Quaternion
from shapely.geometry import MultiPoint, box

11
12
from mmdet3d.structures import Box3DMode, CameraInstance3DBoxes, points_cam2img
from mmdet3d.structures.ops import box_np_ops
ZCMax's avatar
ZCMax committed
13

14
15
16
17
18
kitti_categories = ('Pedestrian', 'Cyclist', 'Car', 'Van', 'Truck',
                    'Person_sitting', 'Tram', 'Misc')

waymo_categories = ('Car', 'Pedestrian', 'Cyclist')

ZCMax's avatar
ZCMax committed
19
20
21
22
23
24
25
26
nus_categories = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle',
                  'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
                  'barrier')

nus_attributes = ('cycle.with_rider', 'cycle.without_rider',
                  'pedestrian.moving', 'pedestrian.standing',
                  'pedestrian.sitting_lying_down', 'vehicle.moving',
                  'vehicle.parked', 'vehicle.stopped', 'None')
27
NuScenesNameMapping = {
ZCMax's avatar
ZCMax committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    'movable_object.barrier': 'barrier',
    'vehicle.bicycle': 'bicycle',
    'vehicle.bus.bendy': 'bus',
    'vehicle.bus.rigid': 'bus',
    'vehicle.car': 'car',
    'vehicle.construction': 'construction_vehicle',
    'vehicle.motorcycle': 'motorcycle',
    'human.pedestrian.adult': 'pedestrian',
    'human.pedestrian.child': 'pedestrian',
    'human.pedestrian.construction_worker': 'pedestrian',
    'human.pedestrian.police_officer': 'pedestrian',
    'movable_object.trafficcone': 'traffic_cone',
    'vehicle.trailer': 'trailer',
    'vehicle.truck': 'truck'
}
43
44
45
46
47
48
49
50
51
52
53
LyftNameMapping = {
    'bicycle': 'bicycle',
    'bus': 'bus',
    'car': 'car',
    'emergency_vehicle': 'emergency_vehicle',
    'motorcycle': 'motorcycle',
    'other_vehicle': 'other_vehicle',
    'pedestrian': 'pedestrian',
    'truck': 'truck',
    'animal': 'animal'
}
ZCMax's avatar
ZCMax committed
54
55


56
57
58
59
def get_nuscenes_2d_boxes(nusc, sample_data_token: str,
                          visibilities: List[str]):
    """Get the 2d / mono3d annotation records for a given `sample_data_token of
    nuscenes dataset.
ZCMax's avatar
ZCMax committed
60
61
62
63
64
65
66

    Args:
        sample_data_token (str): Sample data token belonging to a camera
            keyframe.
        visibilities (list[str]): Visibility filter.

    Return:
67
        list[dict]: List of 2d annotation record that belongs to the input
ZCMax's avatar
ZCMax committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
            `sample_data_token`.
    """

    # Get the sample data and the sample corresponding to that sample data.
    sd_rec = nusc.get('sample_data', sample_data_token)

    assert sd_rec[
        'sensor_modality'] == 'camera', 'Error: get_2d_boxes only works' \
        ' for camera sample_data!'
    if not sd_rec['is_key_frame']:
        raise ValueError(
            'The 2D re-projections are available only for keyframes.')

    s_rec = nusc.get('sample', sd_rec['sample_token'])

    # Get the calibrated sensor and ego pose
    # record to get the transformation matrices.
    cs_rec = nusc.get('calibrated_sensor', sd_rec['calibrated_sensor_token'])
    pose_rec = nusc.get('ego_pose', sd_rec['ego_pose_token'])
    camera_intrinsic = np.array(cs_rec['camera_intrinsic'])

    # Get all the annotation with the specified visibilties.
    ann_recs = [
        nusc.get('sample_annotation', token) for token in s_rec['anns']
    ]
    ann_recs = [
        ann_rec for ann_rec in ann_recs
        if (ann_rec['visibility_token'] in visibilities)
    ]

    repro_recs = []

    for ann_rec in ann_recs:
        # Augment sample_annotation with token information.
        ann_rec['sample_annotation_token'] = ann_rec['token']
        ann_rec['sample_data_token'] = sample_data_token

        # Get the box in global coordinates.
        box = nusc.get_box(ann_rec['token'])

        # Move them to the ego-pose frame.
        box.translate(-np.array(pose_rec['translation']))
        box.rotate(Quaternion(pose_rec['rotation']).inverse)

        # Move them to the calibrated sensor frame.
        box.translate(-np.array(cs_rec['translation']))
        box.rotate(Quaternion(cs_rec['rotation']).inverse)

        # Filter out the corners that are not in front of the calibrated
        # sensor.
        corners_3d = box.corners()
        in_front = np.argwhere(corners_3d[2, :] > 0).flatten()
        corners_3d = corners_3d[:, in_front]

        # Project 3d box to 2d.
        corner_coords = view_points(corners_3d, camera_intrinsic,
                                    True).T[:, :2].tolist()

        # Keep only corners that fall within the image.
        final_coords = post_process_coords(corner_coords)

        # Skip if the convex hull of the re-projected corners
        # does not intersect the image canvas.
        if final_coords is None:
            continue
        else:
            min_x, min_y, max_x, max_y = final_coords

        # Generate dictionary record to be included in the .json file.
        repro_rec = generate_record(ann_rec, min_x, min_y, max_x, max_y,
138
                                    'nuscenes')
ZCMax's avatar
ZCMax committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

        # if repro_rec is None, we do not append it into repre_recs
        if repro_rec is not None:
            loc = box.center.tolist()

            dim = box.wlh
            dim[[0, 1, 2]] = dim[[1, 2, 0]]  # convert wlh to our lhw
            dim = dim.tolist()

            rot = box.orientation.yaw_pitch_roll[0]
            rot = [-rot]  # convert the rot to our cam coordinate

            global_velo2d = nusc.box_velocity(box.token)[:2]
            global_velo3d = np.array([*global_velo2d, 0.0])
            e2g_r_mat = Quaternion(pose_rec['rotation']).rotation_matrix
            c2e_r_mat = Quaternion(cs_rec['rotation']).rotation_matrix
            cam_velo3d = global_velo3d @ np.linalg.inv(
                e2g_r_mat).T @ np.linalg.inv(c2e_r_mat).T
            velo = cam_velo3d[0::2].tolist()

            repro_rec['bbox_3d'] = loc + dim + rot
            repro_rec['velocity'] = velo

            center_3d = np.array(loc).reshape([1, 3])
            center_2d_with_depth = points_cam2img(
                center_3d, camera_intrinsic, with_depth=True)
            center_2d_with_depth = center_2d_with_depth.squeeze().tolist()
            repro_rec['center_2d'] = center_2d_with_depth[:2]
            repro_rec['depth'] = center_2d_with_depth[2]
            # normalized center2D + depth
            # if samples with depth < 0 will be removed
            if repro_rec['depth'] <= 0:
                continue

            ann_token = nusc.get('sample_annotation',
                                 box.token)['attribute_tokens']
            if len(ann_token) == 0:
                attr_name = 'None'
            else:
                attr_name = nusc.get('attribute', ann_token[0])['name']
            attr_id = nus_attributes.index(attr_name)
            # repro_rec['attribute_name'] = attr_name
            repro_rec['attr_label'] = attr_id

            repro_recs.append(repro_rec)

    return repro_recs


188
189
190
191
192
193
194
def get_kitti_style_2d_boxes(info: dict,
                             cam_idx: int = 2,
                             occluded: Tuple[int] = (0, 1, 2, 3),
                             annos: Optional[dict] = None,
                             mono3d: bool = True,
                             dataset: str = 'kitti'):
    """Get the 2d / mono3d annotation records for a given info.
195

196
197
    This function is used to get 2D/Mono3D annotations when loading annotations
    from a kitti-style dataset class, such as KITTI and Waymo dataset.
198
199

    Args:
200
201
202
203
204
205
        info (dict): Information of the given sample data.
        cam_idx (int): Camera id which the 2d / mono3d annotations to obtain
            belong to. In KITTI, typically only CAM 2 will be used,
            and in Waymo, multi cameras could be used.
            Defaults to 2.
        occluded (tuple[int]): Integer (0, 1, 2, 3) indicating occlusion state:
206
            0 = fully visible, 1 = partly occluded, 2 = largely occluded,
207
208
            3 = unknown, -1 = DontCare.
            Defaults to (0, 1, 2, 3).
209
        annos (dict, optional): Original annotations. Defaults to None.
210
        mono3d (bool): Whether to get boxes with mono3d annotation.
211
212
            Defaults to True.
        dataset (str): Dataset name of getting 2d bboxes.
213
            Defaults to 'kitti'.
214
215

    Return:
216
217
        list[dict]: List of 2d / mono3d annotation record that
            belongs to the input camera id.
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    """
    # Get calibration information
    camera_intrinsic = info['calib'][f'P{cam_idx}']

    repro_recs = []
    # if no annotations in info (test dataset), then return
    if annos is None:
        return repro_recs

    # Get all the annotation with the specified visibilties.
    # filter the annotation bboxes by occluded attributes
    ann_dicts = annos
    mask = [(ocld in occluded) for ocld in ann_dicts['occluded']]
    for k in ann_dicts.keys():
        ann_dicts[k] = ann_dicts[k][mask]

    # convert dict of list to list of dict
    ann_recs = []
    for i in range(len(ann_dicts['occluded'])):
        ann_rec = {}
        for k in ann_dicts.keys():
            ann_rec[k] = ann_dicts[k][i]
        ann_recs.append(ann_rec)

    for ann_idx, ann_rec in enumerate(ann_recs):
        # Augment sample_annotation with token information.
        ann_rec['sample_annotation_token'] = \
            f"{info['image']['image_idx']}.{ann_idx}"
        ann_rec['sample_data_token'] = info['image']['image_idx']

        loc = ann_rec['location'][np.newaxis, :]
        dim = ann_rec['dimensions'][np.newaxis, :]
        rot = ann_rec['rotation_y'][np.newaxis, np.newaxis]

        # transform the center from [0.5, 1.0, 0.5] to [0.5, 0.5, 0.5]
        dst = np.array([0.5, 0.5, 0.5])
        src = np.array([0.5, 1.0, 0.5])
        loc = loc + dim * (dst - src)
        loc_3d = np.copy(loc)
        gt_bbox_3d = np.concatenate([loc, dim, rot], axis=1).astype(np.float32)

        # Filter out the corners that are not in front of the calibrated
        # sensor.
        corners_3d = box_np_ops.center_to_corner_box3d(
            gt_bbox_3d[:, :3],
            gt_bbox_3d[:, 3:6],
            gt_bbox_3d[:, 6], [0.5, 0.5, 0.5],
            axis=1)
        corners_3d = corners_3d[0].T  # (1, 8, 3) -> (3, 8)
        in_front = np.argwhere(corners_3d[2, :] > 0).flatten()
        corners_3d = corners_3d[:, in_front]

        # Project 3d box to 2d.
        corner_coords = view_points(corners_3d, camera_intrinsic,
                                    True).T[:, :2].tolist()

        # Keep only corners that fall within the image.
        final_coords = post_process_coords(
            corner_coords,
            imsize=(info['image']['image_shape'][1],
                    info['image']['image_shape'][0]))

        # Skip if the convex hull of the re-projected corners
        # does not intersect the image canvas.
        if final_coords is None:
            continue
        else:
            min_x, min_y, max_x, max_y = final_coords

        # Generate dictionary record to be included in the .json file.
288
289
        repro_rec = generate_record(ann_rec, min_x, min_y, max_x, max_y,
                                    dataset)
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

        # If mono3d=True, add 3D annotations in camera coordinates
        if mono3d and (repro_rec is not None):
            repro_rec['bbox_3d'] = np.concatenate(
                [loc_3d, dim, rot],
                axis=1).astype(np.float32).squeeze().tolist()
            repro_rec['velocity'] = -1  # no velocity in KITTI

            center_3d = np.array(loc).reshape([1, 3])
            center_2d_with_depth = box_np_ops.points_cam2img(
                center_3d, camera_intrinsic, with_depth=True)
            center_2d_with_depth = center_2d_with_depth.squeeze().tolist()

            repro_rec['center_2d'] = center_2d_with_depth[:2]
            repro_rec['depth'] = center_2d_with_depth[2]
            # normalized center2D + depth
            # samples with depth < 0 will be removed
            if repro_rec['depth'] <= 0:
                continue
309
            repro_recs.append(repro_rec)
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

    return repro_recs


def convert_annos(info: dict, cam_idx: int) -> dict:
    """Convert front-cam anns to i-th camera (KITTI-style info)."""
    rect = info['calib']['R0_rect'].astype(np.float32)
    lidar2cam0 = info['calib']['Tr_velo_to_cam'].astype(np.float32)
    lidar2cami = info['calib'][f'Tr_velo_to_cam{cam_idx}'].astype(np.float32)
    annos = info['annos']
    converted_annos = copy.deepcopy(annos)
    loc = annos['location']
    dims = annos['dimensions']
    rots = annos['rotation_y']
    gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                  axis=1).astype(np.float32)
    # convert gt_bboxes_3d to velodyne coordinates
    gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
        Box3DMode.LIDAR, np.linalg.inv(rect @ lidar2cam0), correct_yaw=True)
    # convert gt_bboxes_3d to cam coordinates
    gt_bboxes_3d = gt_bboxes_3d.convert_to(
        Box3DMode.CAM, rect @ lidar2cami, correct_yaw=True).tensor.numpy()
    converted_annos['location'] = gt_bboxes_3d[:, :3]
    converted_annos['dimensions'] = gt_bboxes_3d[:, 3:6]
    converted_annos['rotation_y'] = gt_bboxes_3d[:, 6]
    return converted_annos


ZCMax's avatar
ZCMax committed
338
339
340
341
342
343
344
345
346
347
def post_process_coords(
    corner_coords: List, imsize: Tuple[int, int] = (1600, 900)
) -> Union[Tuple[float, float, float, float], None]:
    """Get the intersection of the convex hull of the reprojected bbox corners
    and the image canvas, return None if no intersection.

    Args:
        corner_coords (list[int]): Corner coordinates of reprojected
            bounding box.
        imsize (tuple[int]): Size of the image canvas.
348
            Defaults to (1600, 900).
ZCMax's avatar
ZCMax committed
349
350

    Return:
351
        tuple[float]: Intersection of the convex hull of the 2D box
ZCMax's avatar
ZCMax committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
            corners and the image canvas.
    """
    polygon_from_2d_box = MultiPoint(corner_coords).convex_hull
    img_canvas = box(0, 0, imsize[0], imsize[1])

    if polygon_from_2d_box.intersects(img_canvas):
        img_intersection = polygon_from_2d_box.intersection(img_canvas)
        intersection_coords = np.array(
            [coord for coord in img_intersection.exterior.coords])

        min_x = min(intersection_coords[:, 0])
        min_y = min(intersection_coords[:, 1])
        max_x = max(intersection_coords[:, 0])
        max_y = max(intersection_coords[:, 1])

        return min_x, min_y, max_x, max_y
    else:
        return None


def generate_record(ann_rec: dict, x1: float, y1: float, x2: float, y2: float,
373
                    dataset: str) -> OrderedDict:
374
375
376
377
378
379
380
381
382
    """Generate one 2D annotation record given various information on top of
    the 2D bounding box coordinates.

    Args:
        ann_rec (dict): Original 3d annotation record.
        x1 (float): Minimum value of the x coordinate.
        y1 (float): Minimum value of the y coordinate.
        x2 (float): Maximum value of the x coordinate.
        y2 (float): Maximum value of the y coordinate.
383
        dataset (str): Name of dataset.
384
385

    Returns:
386
        dict: A sample 2d annotation record.
387
388
389
390
391

            - bbox_label (int): 2d box label id
            - bbox_label_3d (int): 3d box label id
            - bbox (list[float]): left x, top y, right x, bottom y of 2d box
            - bbox_3d_isvalid (bool): whether the box is valid
392
393
    """

394
395
396
397
398
399
400
401
402
403
404
405
406
407
    if dataset == 'nuscenes':
        cat_name = ann_rec['category_name']
        if cat_name not in NuScenesNameMapping:
            return None
        else:
            cat_name = NuScenesNameMapping[cat_name]
            categories = nus_categories
    else:
        if dataset == 'kitti':
            categories = kitti_categories
        elif dataset == 'waymo':
            categories = waymo_categories
        else:
            raise NotImplementedError('Unsupported dataset!')
408

409
410
411
412
        cat_name = ann_rec['name']
        if cat_name not in categories:
            return None

413
414
415
416
417
    rec = dict()
    rec['bbox_label'] = categories.index(cat_name)
    rec['bbox_label_3d'] = rec['bbox_label']
    rec['bbox'] = [x1, y1, x2, y2]
    rec['bbox_3d_isvalid'] = True
418

419
    return rec