anchor3d_head.py 19.6 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
import numpy as np
import torch
3
from mmcv.cnn import bias_init_with_prob, normal_init
zhangwenwei's avatar
zhangwenwei committed
4
from torch import nn as nn
zhangwenwei's avatar
zhangwenwei committed
5

zhangwenwei's avatar
zhangwenwei committed
6
from mmdet3d.core import (PseudoSampler, box3d_multiclass_nms, limit_period,
zhangwenwei's avatar
zhangwenwei committed
7
                          xywhr2xyxyr)
zhangwenwei's avatar
zhangwenwei committed
8
9
from mmdet.core import (build_anchor_generator, build_assigner,
                        build_bbox_coder, build_sampler, multi_apply)
zhangwenwei's avatar
zhangwenwei committed
10
from mmdet.models import HEADS
zhangwenwei's avatar
zhangwenwei committed
11
12
13
14
from ..builder import build_loss
from .train_mixins import AnchorTrainMixin


15
@HEADS.register_module()
zhangwenwei's avatar
zhangwenwei committed
16
17
class Anchor3DHead(nn.Module, AnchorTrainMixin):
    """Anchor head for SECOND/PointPillars/MVXNet/PartA2.
18

zhangwenwei's avatar
zhangwenwei committed
19
    Args:
zhangwenwei's avatar
zhangwenwei committed
20
        num_classes (int): Number of classes.
zhangwenwei's avatar
zhangwenwei committed
21
        in_channels (int): Number of channels in the input feature map.
wuyuefeng's avatar
wuyuefeng committed
22
23
        train_cfg (dict): Train configs.
        test_cfg (dict): Test configs.
zhangwenwei's avatar
zhangwenwei committed
24
        feat_channels (int): Number of channels of the feature map.
25
26
27
28
29
30
31
        use_direction_classifier (bool): Whether to add a direction classifier.
        anchor_generator(dict): Config dict of anchor generator.
        assigner_per_size (bool): Whether to do assignment for each separate
            anchor size.
        assign_per_class (bool): Whether to do assignment for each class.
        diff_rad_by_sin (bool): Whether to change the difference into sin
            difference for box regression loss.
wuyuefeng's avatar
wuyuefeng committed
32
        dir_offset (float | int): The offset of BEV rotation angles.
33
            (TODO: may be moved into box coder)
wuyuefeng's avatar
wuyuefeng committed
34
35
36
        dir_limit_offset (float | int): The limited range of BEV
            rotation angles. (TODO: may be moved into box coder)
        bbox_coder (dict): Config dict of box coders.
zhangwenwei's avatar
zhangwenwei committed
37
38
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
39
        loss_dir (dict): Config of direction classifier loss.
zhangwenwei's avatar
zhangwenwei committed
40
    """
zhangwenwei's avatar
zhangwenwei committed
41
42

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
43
                 num_classes,
zhangwenwei's avatar
zhangwenwei committed
44
45
46
47
48
                 in_channels,
                 train_cfg,
                 test_cfg,
                 feat_channels=256,
                 use_direction_classifier=True,
49
50
51
52
53
54
55
56
                 anchor_generator=dict(
                     type='Anchor3DRangeGenerator',
                     range=[0, -39.68, -1.78, 69.12, 39.68, -1.78],
                     strides=[2],
                     sizes=[[1.6, 3.9, 1.56]],
                     rotations=[0, 1.57],
                     custom_values=[],
                     reshape_out=False),
zhangwenwei's avatar
zhangwenwei committed
57
58
59
60
61
                 assigner_per_size=False,
                 assign_per_class=False,
                 diff_rad_by_sin=True,
                 dir_offset=0,
                 dir_limit_offset=1,
62
                 bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
zhangwenwei's avatar
zhangwenwei committed
63
64
65
66
67
68
69
70
71
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
                 loss_dir=dict(type='CrossEntropyLoss', loss_weight=0.2)):
        super().__init__()
        self.in_channels = in_channels
zhangwenwei's avatar
zhangwenwei committed
72
        self.num_classes = num_classes
zhangwenwei's avatar
zhangwenwei committed
73
74
75
76
77
78
79
80
81
82
83
        self.feat_channels = feat_channels
        self.diff_rad_by_sin = diff_rad_by_sin
        self.use_direction_classifier = use_direction_classifier
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.assigner_per_size = assigner_per_size
        self.assign_per_class = assign_per_class
        self.dir_offset = dir_offset
        self.dir_limit_offset = dir_limit_offset

        # build anchor generator
84
        self.anchor_generator = build_anchor_generator(anchor_generator)
zhangwenwei's avatar
zhangwenwei committed
85
        # In 3D detection, the anchor stride is connected with anchor size
86
        self.num_anchors = self.anchor_generator.num_base_anchors
zhangwenwei's avatar
zhangwenwei committed
87
88
89
        # build box coder
        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.box_code_size = self.bbox_coder.code_size
zhangwenwei's avatar
zhangwenwei committed
90

zhangwenwei's avatar
zhangwenwei committed
91
        # build loss function
zhangwenwei's avatar
zhangwenwei committed
92
        self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
zhangwenwei's avatar
zhangwenwei committed
93
        self.sampling = loss_cls['type'] not in ['FocalLoss', 'GHMC']
zhangwenwei's avatar
zhangwenwei committed
94
95
96
97
98
99
100
        if not self.use_sigmoid_cls:
            self.num_classes += 1
        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)
        self.loss_dir = build_loss(loss_dir)
        self.fp16_enabled = False

zhangwenwei's avatar
zhangwenwei committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        self._init_layers()
        self._init_assigner_sampler()

    def _init_assigner_sampler(self):
        if self.train_cfg is None:
            return

        if self.sampling:
            self.bbox_sampler = build_sampler(self.train_cfg.sampler)
        else:
            self.bbox_sampler = PseudoSampler()
        if isinstance(self.train_cfg.assigner, dict):
            self.bbox_assigner = build_assigner(self.train_cfg.assigner)
        elif isinstance(self.train_cfg.assigner, list):
            self.bbox_assigner = [
                build_assigner(res) for res in self.train_cfg.assigner
            ]

zhangwenwei's avatar
zhangwenwei committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    def _init_layers(self):
        self.cls_out_channels = self.num_anchors * self.num_classes
        self.conv_cls = nn.Conv2d(self.feat_channels, self.cls_out_channels, 1)
        self.conv_reg = nn.Conv2d(self.feat_channels,
                                  self.num_anchors * self.box_code_size, 1)
        if self.use_direction_classifier:
            self.conv_dir_cls = nn.Conv2d(self.feat_channels,
                                          self.num_anchors * 2, 1)

    def init_weights(self):
        bias_cls = bias_init_with_prob(0.01)
        normal_init(self.conv_cls, std=0.01, bias=bias_cls)
        normal_init(self.conv_reg, std=0.01)

    def forward_single(self, x):
wuyuefeng's avatar
wuyuefeng committed
134
135
136
        """Forward function on a single-scale feature map.

        Args:
liyinhao's avatar
liyinhao committed
137
            x (torch.Tensor): Input features.
wuyuefeng's avatar
wuyuefeng committed
138
139

        Returns:
liyinhao's avatar
liyinhao committed
140
            tuple[torch.Tensor]: Contain score of each class, bbox predictions
wuyuefeng's avatar
wuyuefeng committed
141
142
                and class predictions of direction.
        """
zhangwenwei's avatar
zhangwenwei committed
143
144
145
146
147
148
149
150
        cls_score = self.conv_cls(x)
        bbox_pred = self.conv_reg(x)
        dir_cls_preds = None
        if self.use_direction_classifier:
            dir_cls_preds = self.conv_dir_cls(x)
        return cls_score, bbox_pred, dir_cls_preds

    def forward(self, feats):
wuyuefeng's avatar
wuyuefeng committed
151
152
153
        """Forward pass.

        Args:
liyinhao's avatar
liyinhao committed
154
            feats (list[torch.Tensor]): Multi-level features, e.g.,
wuyuefeng's avatar
wuyuefeng committed
155
156
157
                features produced by FPN.

        Returns:
liyinhao's avatar
liyinhao committed
158
            tuple[list[torch.Tensor]]: Multi-level class score, bbox
wuyuefeng's avatar
wuyuefeng committed
159
160
                and direction predictions.
        """
zhangwenwei's avatar
zhangwenwei committed
161
162
        return multi_apply(self.forward_single, feats)

163
    def get_anchors(self, featmap_sizes, input_metas, device='cuda'):
zhangwenwei's avatar
zhangwenwei committed
164
        """Get anchors according to feature map sizes.
zhangwenwei's avatar
zhangwenwei committed
165

zhangwenwei's avatar
zhangwenwei committed
166
167
168
        Args:
            featmap_sizes (list[tuple]): Multi-level feature map sizes.
            input_metas (list[dict]): contain pcd and img's meta info.
zhangwenwei's avatar
zhangwenwei committed
169
170
            device (str): device of current module

zhangwenwei's avatar
zhangwenwei committed
171
        Returns:
172
173
            list[list[torch.Tensor]]: anchors of each image, valid flags
                of each image
zhangwenwei's avatar
zhangwenwei committed
174
175
176
177
        """
        num_imgs = len(input_metas)
        # since feature map sizes of all images are the same, we only compute
        # anchors for one time
178
179
        multi_level_anchors = self.anchor_generator.grid_anchors(
            featmap_sizes, device=device)
zhangwenwei's avatar
zhangwenwei committed
180
181
182
183
184
185
        anchor_list = [multi_level_anchors for _ in range(num_imgs)]
        return anchor_list

    def loss_single(self, cls_score, bbox_pred, dir_cls_preds, labels,
                    label_weights, bbox_targets, bbox_weights, dir_targets,
                    dir_weights, num_total_samples):
wuyuefeng's avatar
wuyuefeng committed
186
187
188
        """Calculate loss of Single-level results.

        Args:
liyinhao's avatar
liyinhao committed
189
190
191
            cls_score (torch.Tensor): Class score in single-level.
            bbox_pred (torch.Tensor): Bbox prediction in single-level.
            dir_cls_preds (torch.Tensor): Predictions of direction class
wuyuefeng's avatar
wuyuefeng committed
192
                in single-level.
liyinhao's avatar
liyinhao committed
193
194
195
196
197
198
            labels (torch.Tensor): Labels of class.
            label_weights (torch.Tensor): Weights of class loss.
            bbox_targets (torch.Tensor): Targets of bbox predictions.
            bbox_weights (torch.Tensor): Weights of bbox loss.
            dir_targets (torch.Tensor): Targets of direction predictions.
            dir_weights (torch.Tensor): Weights of direction loss.
wuyuefeng's avatar
wuyuefeng committed
199
200
201
            num_total_samples (int): The number of valid samples.

        Returns:
liyinhao's avatar
liyinhao committed
202
203
            tuple[torch.Tensor]: losses of class, bbox
                and direction, respectively.
wuyuefeng's avatar
wuyuefeng committed
204
        """
zhangwenwei's avatar
zhangwenwei committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        # classification loss
        if num_total_samples is None:
            num_total_samples = int(cls_score.shape[0])
        labels = labels.reshape(-1)
        label_weights = label_weights.reshape(-1)
        cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.num_classes)
        loss_cls = self.loss_cls(
            cls_score, labels, label_weights, avg_factor=num_total_samples)

        # regression loss
        bbox_targets = bbox_targets.reshape(-1, self.box_code_size)
        bbox_weights = bbox_weights.reshape(-1, self.box_code_size)
        code_weight = self.train_cfg.get('code_weight', None)

        if code_weight:
            bbox_weights = bbox_weights * bbox_weights.new_tensor(code_weight)
        bbox_pred = bbox_pred.permute(0, 2, 3,
                                      1).reshape(-1, self.box_code_size)
        if self.diff_rad_by_sin:
            bbox_pred, bbox_targets = self.add_sin_difference(
                bbox_pred, bbox_targets)
        loss_bbox = self.loss_bbox(
            bbox_pred,
            bbox_targets,
            bbox_weights,
            avg_factor=num_total_samples)

        # direction classification loss
        loss_dir = None
        if self.use_direction_classifier:
            dir_cls_preds = dir_cls_preds.permute(0, 2, 3, 1).reshape(-1, 2)
            dir_targets = dir_targets.reshape(-1)
            dir_weights = dir_weights.reshape(-1)
            loss_dir = self.loss_dir(
                dir_cls_preds,
                dir_targets,
                dir_weights,
                avg_factor=num_total_samples)

        return loss_cls, loss_bbox, loss_dir

    @staticmethod
    def add_sin_difference(boxes1, boxes2):
zhangwenwei's avatar
zhangwenwei committed
248
        """Convert the rotation difference to difference in sine function.
zhangwenwei's avatar
zhangwenwei committed
249
250

        Args:
liyinhao's avatar
liyinhao committed
251
252
253
254
            boxes1 (torch.Tensor): shape (NxC), where C>=7 and
                the 7th dimension is rotation dimension
            boxes2 (torch.Tensor): shape (NxC), where C>=7 and the 7th
                dimension is rotation dimension
zhangwenwei's avatar
zhangwenwei committed
255
256

        Returns:
257
258
            tuple[torch.Tensor]: boxes1 and boxes2 whose 7th dimensions
                are changed
zhangwenwei's avatar
zhangwenwei committed
259
260
261
262
263
264
265
266
267
        """
        rad_pred_encoding = torch.sin(boxes1[..., 6:7]) * torch.cos(
            boxes2[..., 6:7])
        rad_tg_encoding = torch.cos(boxes1[..., 6:7]) * torch.sin(boxes2[...,
                                                                         6:7])
        boxes1 = torch.cat(
            [boxes1[..., :6], rad_pred_encoding, boxes1[..., 7:]], dim=-1)
        boxes2 = torch.cat([boxes2[..., :6], rad_tg_encoding, boxes2[..., 7:]],
                           dim=-1)
zhangwenwei's avatar
zhangwenwei committed
268
269
270
271
272
273
274
275
276
277
        return boxes1, boxes2

    def loss(self,
             cls_scores,
             bbox_preds,
             dir_cls_preds,
             gt_bboxes,
             gt_labels,
             input_metas,
             gt_bboxes_ignore=None):
wuyuefeng's avatar
wuyuefeng committed
278
279
280
        """Calculate losses.

        Args:
liyinhao's avatar
liyinhao committed
281
282
283
            cls_scores (list[torch.Tensor]): Multi-level class scores.
            bbox_preds (list[torch.Tensor]): Multi-level bbox predictions.
            dir_cls_preds (list[torch.Tensor]): Multi-level direction
wuyuefeng's avatar
wuyuefeng committed
284
                class predictions.
zhangwenwei's avatar
zhangwenwei committed
285
            gt_bboxes (list[:obj:`BaseInstance3DBoxes`]): Gt bboxes
wuyuefeng's avatar
wuyuefeng committed
286
                of each sample.
liyinhao's avatar
liyinhao committed
287
            gt_labels (list[torch.Tensor]): Gt labels of each sample.
wuyuefeng's avatar
wuyuefeng committed
288
            input_metas (list[dict]): Contain pcd and img's meta info.
liyinhao's avatar
liyinhao committed
289
290
            gt_bboxes_ignore (None | list[torch.Tensor]): Specify
                which bounding.
wuyuefeng's avatar
wuyuefeng committed
291
292
293

        Returns:
            dict: Contain class, bbox and direction losses of each level.
294
295
296
297

                - loss_cls (list[torch.Tensor]): class losses
                - loss_bbox (list[torch.Tensor]): bbox losses
                - loss_dir (list[torch.Tensor]): direction losses
wuyuefeng's avatar
wuyuefeng committed
298
        """
zhangwenwei's avatar
zhangwenwei committed
299
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
300
301
302
303
        assert len(featmap_sizes) == self.anchor_generator.num_levels
        device = cls_scores[0].device
        anchor_list = self.get_anchors(
            featmap_sizes, input_metas, device=device)
zhangwenwei's avatar
zhangwenwei committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
        label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
        cls_reg_targets = self.anchor_target_3d(
            anchor_list,
            gt_bboxes,
            input_metas,
            gt_bboxes_ignore_list=gt_bboxes_ignore,
            gt_labels_list=gt_labels,
            num_classes=self.num_classes,
            label_channels=label_channels,
            sampling=self.sampling)

        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         dir_targets_list, dir_weights_list, num_total_pos,
         num_total_neg) = cls_reg_targets
        num_total_samples = (
            num_total_pos + num_total_neg if self.sampling else num_total_pos)

        # num_total_samples = None
        losses_cls, losses_bbox, losses_dir = multi_apply(
            self.loss_single,
            cls_scores,
            bbox_preds,
            dir_cls_preds,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            dir_targets_list,
            dir_weights_list,
            num_total_samples=num_total_samples)
        return dict(
zhangwenwei's avatar
zhangwenwei committed
337
            loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dir=losses_dir)
zhangwenwei's avatar
zhangwenwei committed
338
339
340
341
342
343

    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   dir_cls_preds,
                   input_metas,
zhangwenwei's avatar
zhangwenwei committed
344
                   cfg=None,
zhangwenwei's avatar
zhangwenwei committed
345
                   rescale=False):
wuyuefeng's avatar
wuyuefeng committed
346
347
348
        """Get bboxes of anchor head.

        Args:
liyinhao's avatar
liyinhao committed
349
350
351
            cls_scores (list[torch.Tensor]): Multi-level class scores.
            bbox_preds (list[torch.Tensor]): Multi-level bbox predictions.
            dir_cls_preds (list[torch.Tensor]): Multi-level direction
wuyuefeng's avatar
wuyuefeng committed
352
353
354
                class predictions.
            input_metas (list[dict]): Contain pcd and img's meta info.
            cfg (None | ConfigDict): Training or testing config.
liyinhao's avatar
liyinhao committed
355
            rescale (list[torch.Tensor]): whether th rescale bbox.
wuyuefeng's avatar
wuyuefeng committed
356
357
358
359

        Returns:
            list[tuple]: prediction resultes of batches.
        """
zhangwenwei's avatar
zhangwenwei committed
360
361
362
        assert len(cls_scores) == len(bbox_preds)
        assert len(cls_scores) == len(dir_cls_preds)
        num_levels = len(cls_scores)
363
364
        featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
        device = cls_scores[0].device
365
        mlvl_anchors = self.anchor_generator.grid_anchors(
366
            featmap_sizes, device=device)
zhangwenwei's avatar
zhangwenwei committed
367
        mlvl_anchors = [
368
            anchor.reshape(-1, self.box_code_size) for anchor in mlvl_anchors
zhangwenwei's avatar
zhangwenwei committed
369
        ]
370

zhangwenwei's avatar
zhangwenwei committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        result_list = []
        for img_id in range(len(input_metas)):
            cls_score_list = [
                cls_scores[i][img_id].detach() for i in range(num_levels)
            ]
            bbox_pred_list = [
                bbox_preds[i][img_id].detach() for i in range(num_levels)
            ]
            dir_cls_pred_list = [
                dir_cls_preds[i][img_id].detach() for i in range(num_levels)
            ]

            input_meta = input_metas[img_id]
            proposals = self.get_bboxes_single(cls_score_list, bbox_pred_list,
                                               dir_cls_pred_list, mlvl_anchors,
zhangwenwei's avatar
zhangwenwei committed
386
                                               input_meta, cfg, rescale)
zhangwenwei's avatar
zhangwenwei committed
387
388
389
390
391
392
393
394
395
            result_list.append(proposals)
        return result_list

    def get_bboxes_single(self,
                          cls_scores,
                          bbox_preds,
                          dir_cls_preds,
                          mlvl_anchors,
                          input_meta,
zhangwenwei's avatar
zhangwenwei committed
396
                          cfg=None,
zhangwenwei's avatar
zhangwenwei committed
397
                          rescale=False):
wuyuefeng's avatar
wuyuefeng committed
398
399
400
        """Get bboxes of single branch.

        Args:
liyinhao's avatar
liyinhao committed
401
402
403
404
405
            cls_scores (torch.Tensor): Class score in single batch.
            bbox_preds (torch.Tensor): Bbox prediction in single batch.
            dir_cls_preds (torch.Tensor): Predictions of direction class
                in single batch.
            mlvl_anchors (List[torch.Tensor]): Multi-level anchors
wuyuefeng's avatar
wuyuefeng committed
406
407
408
                in single batch.
            input_meta (list[dict]): Contain pcd and img's meta info.
            cfg (None | ConfigDict): Training or testing config.
liyinhao's avatar
liyinhao committed
409
            rescale (list[torch.Tensor]): whether th rescale bbox.
wuyuefeng's avatar
wuyuefeng committed
410
411
412

        Returns:
            tuple: Contain predictions of single batch.
413

zhangwenwei's avatar
zhangwenwei committed
414
                - bboxes (:obj:`BaseInstance3DBoxes`): Predicted 3d bboxes.
liyinhao's avatar
liyinhao committed
415
416
                - scores (torch.Tensor): Class score of each bbox.
                - labels (torch.Tensor): Label of each bbox.
wuyuefeng's avatar
wuyuefeng committed
417
        """
zhangwenwei's avatar
zhangwenwei committed
418
        cfg = self.test_cfg if cfg is None else cfg
zhangwenwei's avatar
zhangwenwei committed
419
420
421
422
423
424
425
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_dir_scores = []
        for cls_score, bbox_pred, dir_cls_pred, anchors in zip(
                cls_scores, bbox_preds, dir_cls_preds, mlvl_anchors):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
zhangwenwei's avatar
zhangwenwei committed
426
427
428
            assert cls_score.size()[-2:] == dir_cls_pred.size()[-2:]
            dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2)
            dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1]
zhangwenwei's avatar
zhangwenwei committed
429
430
431
432
433
434
435
436
437
438

            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.num_classes)
            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                scores = cls_score.softmax(-1)
            bbox_pred = bbox_pred.permute(1, 2,
                                          0).reshape(-1, self.box_code_size)

zhangwenwei's avatar
zhangwenwei committed
439
440
            nms_pre = cfg.get('nms_pre', -1)
            if nms_pre > 0 and scores.shape[0] > nms_pre:
zhangwenwei's avatar
zhangwenwei committed
441
442
443
                if self.use_sigmoid_cls:
                    max_scores, _ = scores.max(dim=1)
                else:
zhangwenwei's avatar
zhangwenwei committed
444
445
446
447
448
449
450
                    max_scores, _ = scores[:, :-1].max(dim=1)
                _, topk_inds = max_scores.topk(nms_pre)
                anchors = anchors[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                scores = scores[topk_inds, :]
                dir_cls_score = dir_cls_score[topk_inds]

451
            bboxes = self.bbox_coder.decode(anchors, bbox_pred)
zhangwenwei's avatar
zhangwenwei committed
452
453
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
zhangwenwei's avatar
zhangwenwei committed
454
            mlvl_dir_scores.append(dir_cls_score)
zhangwenwei's avatar
zhangwenwei committed
455
456

        mlvl_bboxes = torch.cat(mlvl_bboxes)
zhangwenwei's avatar
zhangwenwei committed
457
458
        mlvl_bboxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d'](
            mlvl_bboxes, box_dim=self.box_code_size).bev)
zhangwenwei's avatar
zhangwenwei committed
459
460
461
        mlvl_scores = torch.cat(mlvl_scores)
        mlvl_dir_scores = torch.cat(mlvl_dir_scores)

zhangwenwei's avatar
zhangwenwei committed
462
463
464
465
466
467
468
469
470
471
472
        if self.use_sigmoid_cls:
            # Add a dummy background class to the front when using sigmoid
            padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
            mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)

        score_thr = cfg.get('score_thr', 0)
        results = box3d_multiclass_nms(mlvl_bboxes, mlvl_bboxes_for_nms,
                                       mlvl_scores, score_thr, cfg.max_num,
                                       cfg, mlvl_dir_scores)
        bboxes, scores, labels, dir_scores = results
        if bboxes.shape[0] > 0:
zhangwenwei's avatar
zhangwenwei committed
473
474
            dir_rot = limit_period(bboxes[..., 6] - self.dir_offset,
                                   self.dir_limit_offset, np.pi)
zhangwenwei's avatar
zhangwenwei committed
475
            bboxes[..., 6] = (
zhangwenwei's avatar
zhangwenwei committed
476
                dir_rot + self.dir_offset +
zhangwenwei's avatar
zhangwenwei committed
477
                np.pi * dir_scores.to(bboxes.dtype))
478
        bboxes = input_meta['box_type_3d'](bboxes, box_dim=self.box_code_size)
zhangwenwei's avatar
zhangwenwei committed
479
        return bboxes, scores, labels