point_rcnn_2x8_kitti-3d-3classes.py 3.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
_base_ = [
    '../_base_/datasets/kitti-3d-car.py', '../_base_/models/point_rcnn.py',
    '../_base_/default_runtime.py', '../_base_/schedules/cyclic_40e.py'
]

# dataset settings
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Car', 'Pedestrian', 'Cyclist']
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
input_modality = dict(use_lidar=True, use_camera=False)

db_sampler = dict(
    data_root=data_root,
    info_path=data_root + 'kitti_dbinfos_train.pkl',
    rate=1.0,
    prepare=dict(
        filter_by_difficulty=[-1],
        filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)),
    sample_groups=dict(Car=20, Pedestrian=15, Cyclist=15),
    classes=class_names)

train_pipeline = [
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(
        type='ObjectNoise',
        num_try=100,
        translation_std=[1.0, 1.0, 0.5],
        global_rot_range=[0.0, 0.0],
        rot_range=[-0.78539816, 0.78539816]),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointSample', num_points=16384, sample_range=40.0),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
                type='PointsRangeFilter', point_cloud_range=point_cloud_range),
            dict(type='PointSample', num_points=16384, sample_range=40.0),
            dict(
                type='DefaultFormatBundle3D',
                class_names=class_names,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ])
]

data = dict(
    samples_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type='RepeatDataset',
        times=2,
        dataset=dict(pipeline=train_pipeline, classes=class_names)),
    val=dict(pipeline=test_pipeline, classes=class_names),
    test=dict(pipeline=test_pipeline, classes=class_names))

# optimizer
lr = 0.001  # max learning rate
optimizer = dict(lr=lr, betas=(0.95, 0.85))
# runtime settings
runner = dict(type='EpochBasedRunner', max_epochs=80)
evaluation = dict(interval=2)
# yapf:disable
log_config = dict(
    interval=30,
    hooks=[
        dict(type='TextLoggerHook'),
        dict(type='TensorboardLoggerHook')
    ])
# yapf:enable