primitive_head.py 41.4 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
encore-zhou's avatar
encore-zhou committed
2
3
import torch
from mmcv.cnn import ConvModule
4
from mmcv.runner import BaseModule
encore-zhou's avatar
encore-zhou committed
5
6
7
8
9
from torch import nn as nn
from torch.nn import functional as F

from mmdet3d.models.builder import build_loss
from mmdet3d.models.model_utils import VoteModule
10
from mmdet3d.ops import build_sa_module, furthest_point_sample
encore-zhou's avatar
encore-zhou committed
11
12
13
14
15
from mmdet.core import multi_apply
from mmdet.models import HEADS


@HEADS.register_module()
16
class PrimitiveHead(BaseModule):
encore-zhou's avatar
encore-zhou committed
17
18
19
20
21
22
23
24
25
26
27
    r"""Primitive head of `H3DNet <https://arxiv.org/abs/2006.05682>`_.

    Args:
        num_dims (int): The dimension of primitive semantic information.
        num_classes (int): The number of class.
        primitive_mode (str): The mode of primitive module,
            avaliable mode ['z', 'xy', 'line'].
        bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and
            decoding boxes.
        train_cfg (dict): Config for training.
        test_cfg (dict): Config for testing.
28
        vote_module_cfg (dict): Config of VoteModule for point-wise votes.
encore-zhou's avatar
encore-zhou committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
        vote_aggregation_cfg (dict): Config of vote aggregation layer.
        feat_channels (tuple[int]): Convolution channels of
            prediction layer.
        upper_thresh (float): Threshold for line matching.
        surface_thresh (float): Threshold for suface matching.
        conv_cfg (dict): Config of convolution in prediction layer.
        norm_cfg (dict): Config of BN in prediction layer.
        objectness_loss (dict): Config of objectness loss.
        center_loss (dict): Config of center loss.
        semantic_loss (dict): Config of point-wise semantic segmentation loss.
    """

    def __init__(self,
                 num_dims,
                 num_classes,
                 primitive_mode,
                 train_cfg=None,
                 test_cfg=None,
47
                 vote_module_cfg=None,
encore-zhou's avatar
encore-zhou committed
48
49
50
51
52
53
54
55
56
                 vote_aggregation_cfg=None,
                 feat_channels=(128, 128),
                 upper_thresh=100.0,
                 surface_thresh=0.5,
                 conv_cfg=dict(type='Conv1d'),
                 norm_cfg=dict(type='BN1d'),
                 objectness_loss=None,
                 center_loss=None,
                 semantic_reg_loss=None,
57
58
59
                 semantic_cls_loss=None,
                 init_cfg=None):
        super(PrimitiveHead, self).__init__(init_cfg=init_cfg)
encore-zhou's avatar
encore-zhou committed
60
61
62
63
64
65
66
        assert primitive_mode in ['z', 'xy', 'line']
        # The dimension of primitive semantic information.
        self.num_dims = num_dims
        self.num_classes = num_classes
        self.primitive_mode = primitive_mode
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
67
        self.gt_per_seed = vote_module_cfg['gt_per_seed']
encore-zhou's avatar
encore-zhou committed
68
69
70
71
72
73
74
75
76
        self.num_proposal = vote_aggregation_cfg['num_point']
        self.upper_thresh = upper_thresh
        self.surface_thresh = surface_thresh

        self.objectness_loss = build_loss(objectness_loss)
        self.center_loss = build_loss(center_loss)
        self.semantic_reg_loss = build_loss(semantic_reg_loss)
        self.semantic_cls_loss = build_loss(semantic_cls_loss)

77
        assert vote_aggregation_cfg['mlp_channels'][0] == vote_module_cfg[
encore-zhou's avatar
encore-zhou committed
78
79
80
81
            'in_channels']

        # Primitive existence flag prediction
        self.flag_conv = ConvModule(
82
83
            vote_module_cfg['conv_channels'][-1],
            vote_module_cfg['conv_channels'][-1] // 2,
encore-zhou's avatar
encore-zhou committed
84
85
86
87
88
89
90
            1,
            padding=0,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            bias=True,
            inplace=True)
        self.flag_pred = torch.nn.Conv1d(
91
            vote_module_cfg['conv_channels'][-1] // 2, 2, 1)
encore-zhou's avatar
encore-zhou committed
92

93
        self.vote_module = VoteModule(**vote_module_cfg)
94
        self.vote_aggregation = build_sa_module(vote_aggregation_cfg)
encore-zhou's avatar
encore-zhou committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

        prev_channel = vote_aggregation_cfg['mlp_channels'][-1]
        conv_pred_list = list()
        for k in range(len(feat_channels)):
            conv_pred_list.append(
                ConvModule(
                    prev_channel,
                    feat_channels[k],
                    1,
                    padding=0,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    bias=True,
                    inplace=True))
            prev_channel = feat_channels[k]
        self.conv_pred = nn.Sequential(*conv_pred_list)

        conv_out_channel = 3 + num_dims + num_classes
        self.conv_pred.add_module('conv_out',
                                  nn.Conv1d(prev_channel, conv_out_channel, 1))

    def forward(self, feats_dict, sample_mod):
        """Forward pass.

        Args:
            feats_dict (dict): Feature dict from backbone.
            sample_mod (str): Sample mode for vote aggregation layer.
                valid modes are "vote", "seed" and "random".

        Returns:
            dict: Predictions of primitive head.
        """
        assert sample_mod in ['vote', 'seed', 'random']

        seed_points = feats_dict['fp_xyz_net0'][-1]
        seed_features = feats_dict['hd_feature']
        results = {}

        primitive_flag = self.flag_conv(seed_features)
        primitive_flag = self.flag_pred(primitive_flag)

        results['pred_flag_' + self.primitive_mode] = primitive_flag

        # 1. generate vote_points from seed_points
139
140
        vote_points, vote_features, _ = self.vote_module(
            seed_points, seed_features)
encore-zhou's avatar
encore-zhou committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
        results['vote_' + self.primitive_mode] = vote_points
        results['vote_features_' + self.primitive_mode] = vote_features

        # 2. aggregate vote_points
        if sample_mod == 'vote':
            # use fps in vote_aggregation
            sample_indices = None
        elif sample_mod == 'seed':
            # FPS on seed and choose the votes corresponding to the seeds
            sample_indices = furthest_point_sample(seed_points,
                                                   self.num_proposal)
        elif sample_mod == 'random':
            # Random sampling from the votes
            batch_size, num_seed = seed_points.shape[:2]
            sample_indices = torch.randint(
                0,
                num_seed, (batch_size, self.num_proposal),
                dtype=torch.int32,
                device=seed_points.device)
        else:
            raise NotImplementedError('Unsupported sample mod!')

        vote_aggregation_ret = self.vote_aggregation(vote_points,
                                                     vote_features,
                                                     sample_indices)
        aggregated_points, features, aggregated_indices = vote_aggregation_ret
        results['aggregated_points_' + self.primitive_mode] = aggregated_points
        results['aggregated_features_' + self.primitive_mode] = features
        results['aggregated_indices_' +
                self.primitive_mode] = aggregated_indices

        # 3. predict primitive offsets and semantic information
        predictions = self.conv_pred(features)

        # 4. decode predictions
        decode_ret = self.primitive_decode_scores(predictions,
                                                  aggregated_points)
        results.update(decode_ret)

        center, pred_ind = self.get_primitive_center(
            primitive_flag, decode_ret['center_' + self.primitive_mode])

        results['pred_' + self.primitive_mode + '_ind'] = pred_ind
        results['pred_' + self.primitive_mode + '_center'] = center
        return results

    def loss(self,
             bbox_preds,
             points,
             gt_bboxes_3d,
             gt_labels_3d,
             pts_semantic_mask=None,
             pts_instance_mask=None,
             img_metas=None,
             gt_bboxes_ignore=None):
        """Compute loss.

        Args:
            bbox_preds (dict): Predictions from forward of primitive head.
            points (list[torch.Tensor]): Input points.
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth \
                bboxes of each sample.
            gt_labels_3d (list[torch.Tensor]): Labels of each sample.
            pts_semantic_mask (None | list[torch.Tensor]): Point-wise
                semantic mask.
            pts_instance_mask (None | list[torch.Tensor]): Point-wise
                instance mask.
            img_metas (list[dict]): Contain pcd and img's meta info.
            gt_bboxes_ignore (None | list[torch.Tensor]): Specify
                which bounding.

        Returns:
            dict: Losses of Primitive Head.
        """
        targets = self.get_targets(points, gt_bboxes_3d, gt_labels_3d,
                                   pts_semantic_mask, pts_instance_mask,
                                   bbox_preds)

        (point_mask, point_offset, gt_primitive_center, gt_primitive_semantic,
         gt_sem_cls_label, gt_primitive_mask) = targets

        losses = {}
        # Compute the loss of primitive existence flag
        pred_flag = bbox_preds['pred_flag_' + self.primitive_mode]
        flag_loss = self.objectness_loss(pred_flag, gt_primitive_mask.long())
        losses['flag_loss_' + self.primitive_mode] = flag_loss

        # calculate vote loss
        vote_loss = self.vote_module.get_loss(
            bbox_preds['seed_points'],
            bbox_preds['vote_' + self.primitive_mode],
            bbox_preds['seed_indices'], point_mask, point_offset)
        losses['vote_loss_' + self.primitive_mode] = vote_loss

        num_proposal = bbox_preds['aggregated_points_' +
                                  self.primitive_mode].shape[1]
        primitive_center = bbox_preds['center_' + self.primitive_mode]
        if self.primitive_mode != 'line':
            primitive_semantic = bbox_preds['size_residuals_' +
                                            self.primitive_mode].contiguous()
        else:
            primitive_semantic = None
        semancitc_scores = bbox_preds['sem_cls_scores_' +
                                      self.primitive_mode].transpose(2, 1)

        gt_primitive_mask = gt_primitive_mask / \
            (gt_primitive_mask.sum() + 1e-6)
        center_loss, size_loss, sem_cls_loss = self.compute_primitive_loss(
            primitive_center, primitive_semantic, semancitc_scores,
            num_proposal, gt_primitive_center, gt_primitive_semantic,
            gt_sem_cls_label, gt_primitive_mask)
        losses['center_loss_' + self.primitive_mode] = center_loss
        losses['size_loss_' + self.primitive_mode] = size_loss
        losses['sem_loss_' + self.primitive_mode] = sem_cls_loss

        return losses

    def get_targets(self,
                    points,
                    gt_bboxes_3d,
                    gt_labels_3d,
                    pts_semantic_mask=None,
                    pts_instance_mask=None,
                    bbox_preds=None):
        """Generate targets of primitive head.

        Args:
            points (list[torch.Tensor]): Points of each batch.
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth \
                bboxes of each batch.
            gt_labels_3d (list[torch.Tensor]): Labels of each batch.
            pts_semantic_mask (None | list[torch.Tensor]): Point-wise semantic
                label of each batch.
            pts_instance_mask (None | list[torch.Tensor]): Point-wise instance
                label of each batch.
            bbox_preds (dict): Predictions from forward of primitive head.

        Returns:
            tuple[torch.Tensor]: Targets of primitive head.
        """
        for index in range(len(gt_labels_3d)):
            if len(gt_labels_3d[index]) == 0:
                fake_box = gt_bboxes_3d[index].tensor.new_zeros(
                    1, gt_bboxes_3d[index].tensor.shape[-1])
                gt_bboxes_3d[index] = gt_bboxes_3d[index].new_box(fake_box)
                gt_labels_3d[index] = gt_labels_3d[index].new_zeros(1)

        if pts_semantic_mask is None:
            pts_semantic_mask = [None for i in range(len(gt_labels_3d))]
            pts_instance_mask = [None for i in range(len(gt_labels_3d))]

        (point_mask, point_sem,
         point_offset) = multi_apply(self.get_targets_single, points,
                                     gt_bboxes_3d, gt_labels_3d,
                                     pts_semantic_mask, pts_instance_mask)

        point_mask = torch.stack(point_mask)
        point_sem = torch.stack(point_sem)
        point_offset = torch.stack(point_offset)

        batch_size = point_mask.shape[0]
        num_proposal = bbox_preds['aggregated_points_' +
                                  self.primitive_mode].shape[1]
        num_seed = bbox_preds['seed_points'].shape[1]
        seed_inds = bbox_preds['seed_indices'].long()
        seed_inds_expand = seed_inds.view(batch_size, num_seed,
                                          1).repeat(1, 1, 3)
        seed_gt_votes = torch.gather(point_offset, 1, seed_inds_expand)
        seed_gt_votes += bbox_preds['seed_points']
        gt_primitive_center = seed_gt_votes.view(batch_size * num_proposal, 1,
                                                 3)

        seed_inds_expand_sem = seed_inds.view(batch_size, num_seed, 1).repeat(
            1, 1, 4 + self.num_dims)
        seed_gt_sem = torch.gather(point_sem, 1, seed_inds_expand_sem)
        gt_primitive_semantic = seed_gt_sem[:, :, 3:3 + self.num_dims].view(
            batch_size * num_proposal, 1, self.num_dims).contiguous()

        gt_sem_cls_label = seed_gt_sem[:, :, -1].long()

        gt_votes_mask = torch.gather(point_mask, 1, seed_inds)

        return (point_mask, point_offset, gt_primitive_center,
                gt_primitive_semantic, gt_sem_cls_label, gt_votes_mask)

    def get_targets_single(self,
                           points,
                           gt_bboxes_3d,
                           gt_labels_3d,
                           pts_semantic_mask=None,
                           pts_instance_mask=None):
        """Generate targets of primitive head for single batch.

        Args:
            points (torch.Tensor): Points of each batch.
            gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth \
                boxes of each batch.
            gt_labels_3d (torch.Tensor): Labels of each batch.
            pts_semantic_mask (None | torch.Tensor): Point-wise semantic
                label of each batch.
            pts_instance_mask (None | torch.Tensor): Point-wise instance
                label of each batch.

        Returns:
            tuple[torch.Tensor]: Targets of primitive head.
        """
        gt_bboxes_3d = gt_bboxes_3d.to(points.device)
        num_points = points.shape[0]

        point_mask = points.new_zeros(num_points)
        # Offset to the primitive center
        point_offset = points.new_zeros([num_points, 3])
        # Semantic information of primitive center
        point_sem = points.new_zeros([num_points, 3 + self.num_dims + 1])

356
357
        # Generate pts_semantic_mask and pts_instance_mask when they are None
        if pts_semantic_mask is None or pts_instance_mask is None:
358
            points2box_mask = gt_bboxes_3d.points_in_boxes_batch(points)
359
360
361
362
363
364
365
366
367
368
369
            assignment = points2box_mask.argmax(1)
            background_mask = points2box_mask.max(1)[0] == 0

            if pts_semantic_mask is None:
                pts_semantic_mask = gt_labels_3d[assignment]
                pts_semantic_mask[background_mask] = self.num_classes

            if pts_instance_mask is None:
                pts_instance_mask = assignment
                pts_instance_mask[background_mask] = gt_labels_3d.shape[0]

encore-zhou's avatar
encore-zhou committed
370
        instance_flag = torch.nonzero(
Wenhao Wu's avatar
Wenhao Wu committed
371
            pts_semantic_mask != self.num_classes, as_tuple=False).squeeze(1)
encore-zhou's avatar
encore-zhou committed
372
373
        instance_labels = pts_instance_mask[instance_flag].unique()

374
        with_yaw = gt_bboxes_3d.with_yaw
encore-zhou's avatar
encore-zhou committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
        for i, i_instance in enumerate(instance_labels):
            indices = instance_flag[pts_instance_mask[instance_flag] ==
                                    i_instance]
            coords = points[indices, :3]
            cur_cls_label = pts_semantic_mask[indices][0]

            # Bbox Corners
            cur_corners = gt_bboxes_3d.corners[i]

            plane_lower_temp = points.new_tensor(
                [0, 0, 1, -cur_corners[7, -1]])
            upper_points = cur_corners[[1, 2, 5, 6]]
            refined_distance = (upper_points * plane_lower_temp[:3]).sum(dim=1)

            if self.check_horizon(upper_points) and \
                    plane_lower_temp[0] + plane_lower_temp[1] < \
                    self.train_cfg['lower_thresh']:
                plane_lower = points.new_tensor(
                    [0, 0, 1, plane_lower_temp[-1]])
                plane_upper = points.new_tensor(
                    [0, 0, 1, -torch.mean(refined_distance)])
            else:
                raise NotImplementedError('Only horizontal plane is support!')

            if self.check_dist(plane_upper, upper_points) is False:
                raise NotImplementedError(
                    'Mean distance to plane should be lower than thresh!')

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_lower, coords)

407
            # Get bottom four lines
encore-zhou's avatar
encore-zhou committed
408
409
            if self.primitive_mode == 'line':
                point2line_matching = self.match_point2line(
410
                    coords[selected], cur_corners, with_yaw, mode='bottom')
encore-zhou's avatar
encore-zhou committed
411
412
413
414
415
416
417
418
419
420

                point_mask, point_offset, point_sem = \
                    self._assign_primitive_line_targets(point_mask,
                                                        point_offset,
                                                        point_sem,
                                                        coords[selected],
                                                        indices[selected],
                                                        cur_cls_label,
                                                        point2line_matching,
                                                        cur_corners,
421
422
423
                                                        [1, 1, 0, 0],
                                                        with_yaw,
                                                        mode='bottom')
encore-zhou's avatar
encore-zhou committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437

            # Set the surface labels here
            if self.primitive_mode == 'z' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    point2plane_dist[selected].var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
                    self._assign_primitive_surface_targets(point_mask,
                                                           point_offset,
                                                           point_sem,
                                                           coords[selected],
                                                           indices[selected],
                                                           cur_cls_label,
438
439
440
                                                           cur_corners,
                                                           with_yaw,
                                                           mode='bottom')
encore-zhou's avatar
encore-zhou committed
441
442
443
444
445

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_upper, coords)

446
            # Get top four lines
encore-zhou's avatar
encore-zhou committed
447
448
            if self.primitive_mode == 'line':
                point2line_matching = self.match_point2line(
449
                    coords[selected], cur_corners, with_yaw, mode='top')
encore-zhou's avatar
encore-zhou committed
450
451
452
453
454
455
456
457
458
459

                point_mask, point_offset, point_sem = \
                    self._assign_primitive_line_targets(point_mask,
                                                        point_offset,
                                                        point_sem,
                                                        coords[selected],
                                                        indices[selected],
                                                        cur_cls_label,
                                                        point2line_matching,
                                                        cur_corners,
460
461
462
                                                        [1, 1, 0, 0],
                                                        with_yaw,
                                                        mode='top')
encore-zhou's avatar
encore-zhou committed
463
464
465
466
467
468
469
470
471
472
473
474
475

            if self.primitive_mode == 'z' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    point2plane_dist[selected].var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
                    self._assign_primitive_surface_targets(point_mask,
                                                           point_offset,
                                                           point_sem,
                                                           coords[selected],
                                                           indices[selected],
                                                           cur_cls_label,
476
477
478
                                                           cur_corners,
                                                           with_yaw,
                                                           mode='top')
encore-zhou's avatar
encore-zhou committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

            # Get left two lines
            plane_left_temp = self._get_plane_fomulation(
                cur_corners[2] - cur_corners[3],
                cur_corners[3] - cur_corners[0], cur_corners[0])

            right_points = cur_corners[[4, 5, 7, 6]]
            plane_left_temp /= torch.norm(plane_left_temp[:3])
            refined_distance = (right_points * plane_left_temp[:3]).sum(dim=1)

            if plane_left_temp[2] < self.train_cfg['lower_thresh']:
                plane_left = plane_left_temp
                plane_right = points.new_tensor([
                    plane_left_temp[0], plane_left_temp[1], plane_left_temp[2],
                    -refined_distance.mean()
                ])
            else:
                raise NotImplementedError(
                    'Normal vector of the plane should be horizontal!')

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_left, coords)

503
            # Get left four lines
encore-zhou's avatar
encore-zhou committed
504
            if self.primitive_mode == 'line':
505
506
                point2line_matching = self.match_point2line(
                    coords[selected], cur_corners, with_yaw, mode='left')
encore-zhou's avatar
encore-zhou committed
507
                point_mask, point_offset, point_sem = \
508
509
510
511
512
                    self._assign_primitive_line_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        point2line_matching[2:], cur_corners, [2, 2],
                        with_yaw, mode='left')
encore-zhou's avatar
encore-zhou committed
513
514
515
516
517
518
519

            if self.primitive_mode == 'xy' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    point2plane_dist[selected].var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
520
521
522
523
                    self._assign_primitive_surface_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        cur_corners, with_yaw, mode='left')
encore-zhou's avatar
encore-zhou committed
524
525
526
527
528

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_right, coords)

529
            # Get right four lines
encore-zhou's avatar
encore-zhou committed
530
            if self.primitive_mode == 'line':
531
532
                point2line_matching = self.match_point2line(
                    coords[selected], cur_corners, with_yaw, mode='right')
encore-zhou's avatar
encore-zhou committed
533
534

                point_mask, point_offset, point_sem = \
535
536
537
538
539
                    self._assign_primitive_line_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        point2line_matching[2:], cur_corners, [2, 2],
                        with_yaw, mode='right')
encore-zhou's avatar
encore-zhou committed
540
541
542
543
544
545
546

            if self.primitive_mode == 'xy' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    point2plane_dist[selected].var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
547
548
549
550
                    self._assign_primitive_surface_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        cur_corners, with_yaw, mode='right')
encore-zhou's avatar
encore-zhou committed
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

            plane_front_temp = self._get_plane_fomulation(
                cur_corners[0] - cur_corners[4],
                cur_corners[4] - cur_corners[5], cur_corners[5])

            back_points = cur_corners[[3, 2, 7, 6]]
            plane_front_temp /= torch.norm(plane_front_temp[:3])
            refined_distance = (back_points * plane_front_temp[:3]).sum(dim=1)

            if plane_front_temp[2] < self.train_cfg['lower_thresh']:
                plane_front = plane_front_temp
                plane_back = points.new_tensor([
                    plane_front_temp[0], plane_front_temp[1],
                    plane_front_temp[2], -torch.mean(refined_distance)
                ])
            else:
                raise NotImplementedError(
                    'Normal vector of the plane should be horizontal!')

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_front, coords)

            if self.primitive_mode == 'xy' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    (point2plane_dist[selected]).var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
580
581
582
583
                    self._assign_primitive_surface_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        cur_corners, with_yaw, mode='front')
encore-zhou's avatar
encore-zhou committed
584
585
586
587
588
589
590
591
592
593
594

            # Get the boundary points here
            point2plane_dist, selected = self.match_point2plane(
                plane_back, coords)

            if self.primitive_mode == 'xy' and \
                    selected.sum() > self.train_cfg['num_point'] and \
                    point2plane_dist[selected].var() < \
                    self.train_cfg['var_thresh']:

                point_mask, point_offset, point_sem = \
595
596
597
598
                    self._assign_primitive_surface_targets(
                        point_mask, point_offset, point_sem,
                        coords[selected], indices[selected], cur_cls_label,
                        cur_corners, with_yaw, mode='back')
encore-zhou's avatar
encore-zhou committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655

        return (point_mask, point_sem, point_offset)

    def primitive_decode_scores(self, predictions, aggregated_points):
        """Decode predicted parts to primitive head.

        Args:
            predictions (torch.Tensor): primitive pridictions of each batch.
            aggregated_points (torch.Tensor): The aggregated points
                of vote stage.

        Returns:
            Dict: Predictions of primitive head, including center,
                semantic size and semantic scores.
        """

        ret_dict = {}
        pred_transposed = predictions.transpose(2, 1)

        center = aggregated_points + pred_transposed[:, :, 0:3]
        ret_dict['center_' + self.primitive_mode] = center

        if self.primitive_mode in ['z', 'xy']:
            ret_dict['size_residuals_' + self.primitive_mode] = \
                pred_transposed[:, :, 3:3 + self.num_dims]

        ret_dict['sem_cls_scores_' + self.primitive_mode] = \
            pred_transposed[:, :, 3 + self.num_dims:]

        return ret_dict

    def check_horizon(self, points):
        """Check whether is a horizontal plane.

        Args:
            points (torch.Tensor): Points of input.

        Returns:
            Bool: Flag of result.
        """
        return (points[0][-1] == points[1][-1]) and \
               (points[1][-1] == points[2][-1]) and \
               (points[2][-1] == points[3][-1])

    def check_dist(self, plane_equ, points):
        """Whether the mean of points to plane distance is lower than thresh.

        Args:
            plane_equ (torch.Tensor): Plane to be checked.
            points (torch.Tensor): Points to be checked.

        Returns:
            Tuple: Flag of result.
        """
        return (points[:, 2] +
                plane_equ[-1]).sum() / 4.0 < self.train_cfg['lower_thresh']

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
    def point2line_dist(self, points, pts_a, pts_b):
        """Calculate the distance from point to line.

        Args:
            points (torch.Tensor): Points of input.
            pts_a (torch.Tensor): Point on the specific line.
            pts_b (torch.Tensor): Point on the specific line.

        Returns:
            torch.Tensor: Distance between each point to line.
        """
        line_a2b = pts_b - pts_a
        line_a2pts = points - pts_a
        length = (line_a2pts * line_a2b.view(1, 3)).sum(1) / \
            line_a2b.norm()
        dist = (line_a2pts.norm(dim=1)**2 - length**2).sqrt()

        return dist

    def match_point2line(self, points, corners, with_yaw, mode='bottom'):
encore-zhou's avatar
encore-zhou committed
676
677
678
679
        """Match points to corresponding line.

        Args:
            points (torch.Tensor): Points of input.
680
681
682
683
684
            corners (torch.Tensor): Eight corners of a bounding box.
            with_yaw (Bool): Whether the boundind box is with rotation.
            mode (str, optional): Specify which line should be matched,
                available mode are ('bottom', 'top', 'left', 'right').
                Defaults to 'bottom'.
encore-zhou's avatar
encore-zhou committed
685
686
687
688

        Returns:
            Tuple: Flag of matching correspondence.
        """
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
        if with_yaw:
            corners_pair = {
                'bottom': [[0, 3], [4, 7], [0, 4], [3, 7]],
                'top': [[1, 2], [5, 6], [1, 5], [2, 6]],
                'left': [[0, 1], [3, 2], [0, 1], [3, 2]],
                'right': [[4, 5], [7, 6], [4, 5], [7, 6]]
            }
            selected_list = []
            for pair_index in corners_pair[mode]:
                selected = self.point2line_dist(
                    points, corners[pair_index[0]], corners[pair_index[1]]) \
                    < self.train_cfg['line_thresh']
                selected_list.append(selected)
        else:
            xmin, ymin, _ = corners.min(0)[0]
            xmax, ymax, _ = corners.max(0)[0]
            sel1 = torch.abs(points[:, 0] -
                             xmin) < self.train_cfg['line_thresh']
            sel2 = torch.abs(points[:, 0] -
                             xmax) < self.train_cfg['line_thresh']
            sel3 = torch.abs(points[:, 1] -
                             ymin) < self.train_cfg['line_thresh']
            sel4 = torch.abs(points[:, 1] -
                             ymax) < self.train_cfg['line_thresh']
            selected_list = [sel1, sel2, sel3, sel4]
        return selected_list
encore-zhou's avatar
encore-zhou committed
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801

    def match_point2plane(self, plane, points):
        """Match points to plane.

        Args:
            plane (torch.Tensor): Equation of the plane.
            points (torch.Tensor): Points of input.

        Returns:
            Tuple: Distance of each point to the plane and
                flag of matching correspondence.
        """
        point2plane_dist = torch.abs((points * plane[:3]).sum(dim=1) +
                                     plane[-1])
        min_dist = point2plane_dist.min()
        selected = torch.abs(point2plane_dist -
                             min_dist) < self.train_cfg['dist_thresh']
        return point2plane_dist, selected

    def compute_primitive_loss(self, primitive_center, primitive_semantic,
                               semantic_scores, num_proposal,
                               gt_primitive_center, gt_primitive_semantic,
                               gt_sem_cls_label, gt_primitive_mask):
        """Compute loss of primitive module.

        Args:
            primitive_center (torch.Tensor): Pridictions of primitive center.
            primitive_semantic (torch.Tensor): Pridictions of primitive
                semantic.
            semantic_scores (torch.Tensor): Pridictions of primitive
                semantic scores.
            num_proposal (int): The number of primitive proposal.
            gt_primitive_center (torch.Tensor): Ground truth of
                primitive center.
            gt_votes_sem (torch.Tensor): Ground truth of primitive semantic.
            gt_sem_cls_label (torch.Tensor): Ground truth of primitive
                semantic class.
            gt_primitive_mask (torch.Tensor): Ground truth of primitive mask.

        Returns:
            Tuple: Loss of primitive module.
        """
        batch_size = primitive_center.shape[0]
        vote_xyz_reshape = primitive_center.view(batch_size * num_proposal, -1,
                                                 3)

        center_loss = self.center_loss(
            vote_xyz_reshape,
            gt_primitive_center,
            dst_weight=gt_primitive_mask.view(batch_size * num_proposal, 1))[1]

        if self.primitive_mode != 'line':
            size_xyz_reshape = primitive_semantic.view(
                batch_size * num_proposal, -1, self.num_dims).contiguous()
            size_loss = self.semantic_reg_loss(
                size_xyz_reshape,
                gt_primitive_semantic,
                dst_weight=gt_primitive_mask.view(batch_size * num_proposal,
                                                  1))[1]
        else:
            size_loss = center_loss.new_tensor(0.0)

        # Semantic cls loss
        sem_cls_loss = self.semantic_cls_loss(
            semantic_scores, gt_sem_cls_label, weight=gt_primitive_mask)

        return center_loss, size_loss, sem_cls_loss

    def get_primitive_center(self, pred_flag, center):
        """Generate primitive center from predictions.

        Args:
            pred_flag (torch.Tensor): Scores of primitive center.
            center (torch.Tensor): Pridictions of primitive center.

        Returns:
            Tuple: Primitive center and the prediction indices.
        """
        ind_normal = F.softmax(pred_flag, dim=1)
        pred_indices = (ind_normal[:, 1, :] >
                        self.surface_thresh).detach().float()
        selected = (ind_normal[:, 1, :] <=
                    self.surface_thresh).detach().float()
        offset = torch.ones_like(center) * self.upper_thresh
        center = center + offset * selected.unsqueeze(-1)
        return center, pred_indices

802
803
804
805
806
807
808
809
810
811
812
813
    def _assign_primitive_line_targets(self,
                                       point_mask,
                                       point_offset,
                                       point_sem,
                                       coords,
                                       indices,
                                       cls_label,
                                       point2line_matching,
                                       corners,
                                       center_axises,
                                       with_yaw,
                                       mode='bottom'):
encore-zhou's avatar
encore-zhou committed
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
        """Generate targets of line primitive.

        Args:
            point_mask (torch.Tensor): Tensor to store the ground
                truth of mask.
            point_offset (torch.Tensor): Tensor to store the ground
                truth of offset.
            point_sem (torch.Tensor): Tensor to store the ground
                truth of semantic.
            coords (torch.Tensor): The selected points.
            indices (torch.Tensor): Indices of the selected points.
            cls_label (int): Class label of the ground truth bounding box.
            point2line_matching (torch.Tensor): Flag indicate that
                matching line of each point.
            corners (torch.Tensor): Corners of the ground truth bounding box.
            center_axises (list[int]): Indicate in which axis the line center
                should be refined.
831
832
833
834
            with_yaw (Bool): Whether the boundind box is with rotation.
            mode (str, optional): Specify which line should be matched,
                available mode are ('bottom', 'top', 'left', 'right').
                Defaults to 'bottom'.
encore-zhou's avatar
encore-zhou committed
835
836
837
838

        Returns:
            Tuple: Targets of the line primitive.
        """
839
840
841
842
843
844
845
846
847
848
849
        corners_pair = {
            'bottom': [[0, 3], [4, 7], [0, 4], [3, 7]],
            'top': [[1, 2], [5, 6], [1, 5], [2, 6]],
            'left': [[0, 1], [3, 2]],
            'right': [[4, 5], [7, 6]]
        }
        corners_pair = corners_pair[mode]
        assert len(corners_pair) == len(point2line_matching) == len(
            center_axises)
        for line_select, center_axis, pair_index in zip(
                point2line_matching, center_axises, corners_pair):
encore-zhou's avatar
encore-zhou committed
850
851
            if line_select.sum() > self.train_cfg['num_point_line']:
                point_mask[indices[line_select]] = 1.0
852
853
854
855
856
857
858
859

                if with_yaw:
                    line_center = (corners[pair_index[0]] +
                                   corners[pair_index[1]]) / 2
                else:
                    line_center = coords[line_select].mean(dim=0)
                    line_center[center_axis] = corners[:, center_axis].mean()

encore-zhou's avatar
encore-zhou committed
860
861
862
863
864
865
866
                point_offset[indices[line_select]] = \
                    line_center - coords[line_select]
                point_sem[indices[line_select]] = \
                    point_sem.new_tensor([line_center[0], line_center[1],
                                          line_center[2], cls_label])
        return point_mask, point_offset, point_sem

867
868
869
870
871
872
873
874
875
876
    def _assign_primitive_surface_targets(self,
                                          point_mask,
                                          point_offset,
                                          point_sem,
                                          coords,
                                          indices,
                                          cls_label,
                                          corners,
                                          with_yaw,
                                          mode='bottom'):
encore-zhou's avatar
encore-zhou committed
877
878
879
880
881
882
883
884
885
886
887
888
889
        """Generate targets for primitive z and primitive xy.

        Args:
            point_mask (torch.Tensor): Tensor to store the ground
                truth of mask.
            point_offset (torch.Tensor): Tensor to store the ground
                truth of offset.
            point_sem (torch.Tensor): Tensor to store the ground
                truth of semantic.
            coords (torch.Tensor): The selected points.
            indices (torch.Tensor): Indices of the selected points.
            cls_label (int): Class label of the ground truth bounding box.
            corners (torch.Tensor): Corners of the ground truth bounding box.
890
891
892
893
894
            with_yaw (Bool): Whether the boundind box is with rotation.
            mode (str, optional): Specify which line should be matched,
                available mode are ('bottom', 'top', 'left', 'right',
                'front', 'back').
                Defaults to 'bottom'.
encore-zhou's avatar
encore-zhou committed
895
896
897
898
899

        Returns:
            Tuple: Targets of the center primitive.
        """
        point_mask[indices] = 1.0
900
901
902
903
904
905
906
907
908
        corners_pair = {
            'bottom': [0, 7],
            'top': [1, 6],
            'left': [0, 1],
            'right': [4, 5],
            'front': [0, 1],
            'back': [3, 2]
        }
        pair_index = corners_pair[mode]
encore-zhou's avatar
encore-zhou committed
909
        if self.primitive_mode == 'z':
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
            if with_yaw:
                center = (corners[pair_index[0]] +
                          corners[pair_index[1]]) / 2.0
                center[2] = coords[:, 2].mean()
                point_sem[indices] = point_sem.new_tensor([
                    center[0], center[1],
                    center[2], (corners[4] - corners[0]).norm(),
                    (corners[3] - corners[0]).norm(), cls_label
                ])
            else:
                center = point_mask.new_tensor([
                    corners[:, 0].mean(), corners[:, 1].mean(),
                    coords[:, 2].mean()
                ])
                point_sem[indices] = point_sem.new_tensor([
                    center[0], center[1], center[2],
                    corners[:, 0].max() - corners[:, 0].min(),
                    corners[:, 1].max() - corners[:, 1].min(), cls_label
                ])
encore-zhou's avatar
encore-zhou committed
929
        elif self.primitive_mode == 'xy':
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
            if with_yaw:
                center = coords.mean(0)
                center[2] = (corners[pair_index[0], 2] +
                             corners[pair_index[1], 2]) / 2.0
                point_sem[indices] = point_sem.new_tensor([
                    center[0], center[1], center[2],
                    corners[pair_index[1], 2] - corners[pair_index[0], 2],
                    cls_label
                ])
            else:
                center = point_mask.new_tensor([
                    coords[:, 0].mean(), coords[:, 1].mean(),
                    corners[:, 2].mean()
                ])
                point_sem[indices] = point_sem.new_tensor([
                    center[0], center[1], center[2],
                    corners[:, 2].max() - corners[:, 2].min(), cls_label
                ])
encore-zhou's avatar
encore-zhou committed
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
        point_offset[indices] = center - coords
        return point_mask, point_offset, point_sem

    def _get_plane_fomulation(self, vector1, vector2, point):
        """Compute the equation of the plane.

        Args:
            vector1 (torch.Tensor): Parallel vector of the plane.
            vector2 (torch.Tensor): Parallel vector of the plane.
            point (torch.Tensor): Point on the plane.

        Returns:
            torch.Tensor: Equation of the plane.
        """
        surface_norm = torch.cross(vector1, vector2)
        surface_dis = -torch.dot(surface_norm, point)
        plane = point.new_tensor(
            [surface_norm[0], surface_norm[1], surface_norm[2], surface_dis])
        return plane