hv_pointpillars_secfpn_6x8_160e_kitti-3d-car.py 3.12 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
# model settings
zhangwenwei's avatar
zhangwenwei committed
2
3
_base_ = './hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py'

zhangwenwei's avatar
zhangwenwei committed
4
5
6
point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1]
model = dict(
    bbox_head=dict(
zhangwenwei's avatar
zhangwenwei committed
7
8
        type='Anchor3DHead',
        num_classes=1,
9
        anchor_generator=dict(
zhangwenwei's avatar
zhangwenwei committed
10
            _delete_=True,
11
12
            type='Anchor3DRangeGenerator',
            ranges=[[0, -39.68, -1.78, 69.12, 39.68, -1.78]],
13
            sizes=[[3.9, 1.6, 1.56]],
14
            rotations=[0, 1.57],
15
16
17
18
19
20
21
22
23
24
25
26
27
28
            reshape_out=True)),
    # model training and testing settings
    train_cfg=dict(
        _delete_=True,
        assigner=dict(
            type='MaxIoUAssigner',
            iou_calculator=dict(type='BboxOverlapsNearest3D'),
            pos_iou_thr=0.6,
            neg_iou_thr=0.45,
            min_pos_iou=0.45,
            ignore_iof_thr=-1),
        allowed_border=0,
        pos_weight=-1,
        debug=False))
zhangwenwei's avatar
zhangwenwei committed
29
30
31
32
33
34

# dataset settings
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Car']
db_sampler = dict(
zhangwenwei's avatar
zhangwenwei committed
35
    data_root=data_root,
zhangwenwei's avatar
zhangwenwei committed
36
37
    info_path=data_root + 'kitti_dbinfos_train.pkl',
    rate=1.0,
zhangwenwei's avatar
zhangwenwei committed
38
    prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)),
zhangwenwei's avatar
zhangwenwei committed
39
    sample_groups=dict(Car=15),
zhangwenwei's avatar
zhangwenwei committed
40
    classes=class_names)
zhangwenwei's avatar
zhangwenwei committed
41
42

train_pipeline = [
43
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
zhangwenwei's avatar
zhangwenwei committed
44
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
zhangwenwei's avatar
zhangwenwei committed
45
46
47
48
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(
        type='ObjectNoise',
        num_try=100,
zhangwenwei's avatar
zhangwenwei committed
49
        translation_std=[0.25, 0.25, 0.25],
zhangwenwei's avatar
zhangwenwei committed
50
        global_rot_range=[0.0, 0.0],
zhangwenwei's avatar
zhangwenwei committed
51
        rot_range=[-0.15707963267, 0.15707963267]),
wuyuefeng's avatar
wuyuefeng committed
52
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
zhangwenwei's avatar
zhangwenwei committed
53
    dict(
zhangwenwei's avatar
zhangwenwei committed
54
55
56
        type='GlobalRotScaleTrans',
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05]),
zhangwenwei's avatar
zhangwenwei committed
57
58
59
60
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
zhangwenwei's avatar
zhangwenwei committed
61
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
zhangwenwei's avatar
zhangwenwei committed
62
63
]
test_pipeline = [
64
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
zhangwenwei's avatar
zhangwenwei committed
65
    dict(
zhangwenwei's avatar
zhangwenwei committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
                type='PointsRangeFilter', point_cloud_range=point_cloud_range),
            dict(
                type='DefaultFormatBundle3D',
                class_names=class_names,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ])
zhangwenwei's avatar
zhangwenwei committed
85
86
87
88
]

data = dict(
    train=dict(
89
90
        type='RepeatDataset',
        times=2,
zhangwenwei's avatar
zhangwenwei committed
91
92
93
        dataset=dict(pipeline=train_pipeline, classes=class_names)),
    val=dict(pipeline=test_pipeline, classes=class_names),
    test=dict(pipeline=test_pipeline, classes=class_names))