fcos3d.py 2.25 KB
Newer Older
twang's avatar
twang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
model = dict(
    type='FCOSMono3D',
    pretrained='open-mmlab://detectron2/resnet101_caffe',
    backbone=dict(
        type='ResNet',
        depth=101,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=False),
        norm_eval=True,
        style='caffe'),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        start_level=1,
xiliu8006's avatar
xiliu8006 committed
18
        add_extra_convs='on_output',
twang's avatar
twang committed
19
20
21
22
23
24
25
26
27
28
29
30
31
        num_outs=5,
        relu_before_extra_convs=True),
    bbox_head=dict(
        type='FCOSMono3DHead',
        num_classes=10,
        in_channels=256,
        stacked_convs=2,
        feat_channels=256,
        use_direction_classifier=True,
        diff_rad_by_sin=True,
        pred_attrs=True,
        pred_velo=True,
        dir_offset=0.7854,  # pi/4
32
        dir_limit_offset=0,
twang's avatar
twang committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        strides=[8, 16, 32, 64, 128],
        group_reg_dims=(2, 1, 3, 1, 2),  # offset, depth, size, rot, velo
        cls_branch=(256, ),
        reg_branch=(
            (256, ),  # offset
            (256, ),  # depth
            (256, ),  # size
            (256, ),  # rot
            ()  # velo
        ),
        dir_branch=(256, ),
        attr_branch=(256, ),
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
        loss_dir=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
        loss_attr=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
        loss_centerness=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        norm_on_bbox=True,
        centerness_on_reg=True,
        center_sampling=True,
        conv_bias=True,
        dcn_on_last_conv=True),
    train_cfg=dict(
        allowed_border=0,
        code_weight=[1.0, 1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 0.05, 0.05],
        pos_weight=-1,
        debug=False),
    test_cfg=dict(
        use_rotate_nms=True,
        nms_across_levels=False,
        nms_pre=1000,
        nms_thr=0.8,
        score_thr=0.05,
        min_bbox_size=0,
        max_per_img=200))