"tests/pipelines/cosmos/test_cosmos2_text2image.py" did not exist on "96c376a5ff201a31d676091a59a011c8c29d095b"
dataset_prepare.md 17.4 KB
Newer Older
twang's avatar
twang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Dataset Preparation

## Before Preparation

It is recommended to symlink the dataset root to `$MMDETECTION3D/data`.
If your folder structure is different from the following, you may need to change the corresponding paths in config files.

```
mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── nuscenes
│   │   ├── maps
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── v1.0-test
|   |   ├── v1.0-trainval
│   ├── kitti
│   │   ├── ImageSets
│   │   ├── testing
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── velodyne
│   │   ├── training
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── label_2
│   │   │   ├── velodyne
│   ├── waymo
│   │   ├── waymo_format
│   │   │   ├── training
│   │   │   ├── validation
│   │   │   ├── testing
│   │   │   ├── gt.bin
│   │   ├── kitti_format
│   │   │   ├── ImageSets
│   ├── lyft
│   │   ├── v1.01-train
│   │   │   ├── v1.01-train (train_data)
│   │   │   ├── lidar (train_lidar)
│   │   │   ├── images (train_images)
│   │   │   ├── maps (train_maps)
│   │   ├── v1.01-test
│   │   │   ├── v1.01-test (test_data)
│   │   │   ├── lidar (test_lidar)
│   │   │   ├── images (test_images)
│   │   │   ├── maps (test_maps)
│   │   ├── train.txt
│   │   ├── val.txt
│   │   ├── test.txt
│   │   ├── sample_submission.csv
54
55
56
57
58
59
│   ├── s3dis
│   │   ├── meta_data
│   │   ├── Stanford3dDataset_v1.2_Aligned_Version
│   │   ├── collect_indoor3d_data.py
│   │   ├── indoor3d_util.py
│   │   ├── README.md
twang's avatar
twang committed
60
61
62
│   ├── scannet
│   │   ├── meta_data
│   │   ├── scans
63
│   │   ├── scans_test
twang's avatar
twang committed
64
65
66
67
68
69
70
71
72
73
│   │   ├── batch_load_scannet_data.py
│   │   ├── load_scannet_data.py
│   │   ├── scannet_utils.py
│   │   ├── README.md
│   ├── sunrgbd
│   │   ├── OFFICIAL_SUNRGBD
│   │   ├── matlab
│   │   ├── sunrgbd_data.py
│   │   ├── sunrgbd_utils.py
│   │   ├── README.md
74
75
76
77
78
79
80
81
│   ├── semantickitti
│   │   ├── sequences
│   │   │   ├── 00
│   │   │   │   ├── labels
│   │   │   │   ├── velodyne
│   │   │   ├── 01
│   │   │   ├── ..
│   │   │   ├── 22
twang's avatar
twang committed
82
83
84
85
86
87
88

```

## Download and Data Preparation

### KITTI

89
Download KITTI 3D detection data [HERE](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d). Prepare KITTI data splits by running:
twang's avatar
twang committed
90
91
92
93
94
95
96
97
98

```bash
mkdir ./data/kitti/ && mkdir ./data/kitti/ImageSets

# Download data split
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/test.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/test.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/train.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/train.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/val.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/val.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/trainval.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/trainval.txt
99
100
```

101
Then generate info files by running:
twang's avatar
twang committed
102

103
```bash
twang's avatar
twang committed
104
105
106
python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --extra-tag kitti
```

107
In an environment using slurm, users may run the following command instead:
108

109
```bash
110
111
112
sh tools/create_data.sh <partition> kitti
```

113
114
115
116
117
118
119
120
**Tips**:

- **Ready-made Annotations**. We have also provided kitti data annotation files generated offline [here](#summary-of-annotation-files). You could download them and place them under `data/kitti/`. However, if you want to use `ObjectSample` Augmentation in LiDAR-based detection methods, you should additionally generate groundtruth database files and annotations.

  ```bash
  python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --extra-tag kitti --only-gt-databse
  ```

twang's avatar
twang committed
121
122
### Waymo

123
Download Waymo open dataset V1.4.1 [HERE](https://waymo.com/open/download/) and its data split [HERE](https://drive.google.com/drive/folders/18BVuF_RYJF0NjZpt8SnfzANiakoRMf0o?usp=sharing). Then put `.tfrecord` files into corresponding folders in `data/waymo/waymo_format/` and put the data split `.txt` files into `data/waymo/kitti_format/ImageSets`. Download ground truth `.bin` file for validation set [HERE](https://console.cloud.google.com/storage/browser/waymo_open_dataset_v_1_4_1/validation/ground_truth_objects) and put it into `data/waymo/waymo_format/`. A tip is that you can use `gsutil` to download the large-scale dataset with commands. You can take this [tool](https://github.com/RalphMao/Waymo-Dataset-Tool) as an example for more details. Subsequently, prepare waymo data by running:
twang's avatar
twang committed
124
125
126
127
128

```bash
python tools/create_data.py waymo --root-path ./data/waymo/ --out-dir ./data/waymo/ --workers 128 --extra-tag waymo
```

129
130
Note that:

131
132
- In case the preprocessing of Waymo dataset is slow or blocked, consider reducing the value of `--workers`. If this doesn't resolve the issue, you could set `--workers` as 0 to avoid using multiprocess.

133
- If your local disk does not have enough space for saving converted data, you can change the `--out-dir` to anywhere else. Just remember to create folders and prepare data there in advance and link them back to `data/waymo/kitti_format` after the data conversion.
134

135
136
137
138
139
140
141
142
143
144
145
**Tips**:

- **Ready-made Annotations**. We have provided the annotation files generated offline [here](#summary-of-annotation-files). However, the original Waymo data still needs to be converted to `kitti-format` data by yourself.

- **Waymo-mini**. If you just want to use a part of Waymo Dataset to verify some methods or debug quickly, you could use our provided [Waymo-mini](https://download.openmmlab.com/mmdetection3d/data/waymo/waymo_mini_kitti_format.tar.gz) which only contains two segments in train split and one segment in val split from the original dataset. All the images, point clouds and annotations in this compressed file have been processed offline so that you can directly download and unzip it to `data/waymo/`:

  ```bash
  tar -xzvf waymo_mini_kitti_format.tar.gz -C ./data/waymo
  ```

- **Faster evaluation**. If you want faster evaluation on Waymo, you can download the preprocessed [metainfo](https://download.openmmlab.com/mmdetection3d/data/waymo/idx2metainfo.pkl) containing `contextname` and `timestamp` to the directory `data/waymo/waymo_format/` and then modify the dataset config as the following:
146
147
148
149
150
151
152

  ```python
  val_evaluator = dict(
      type='WaymoMetric',
      ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl',
      waymo_bin_file='./data/waymo/waymo_format/gt.bin',
      data_root='./data/waymo/waymo_format',
153
      backend_args=backend_args,
154
155
156
157
158
159
      convert_kitti_format=True,
      idx2metainfo='data/waymo/waymo_format/idx2metainfo.pkl'
      )
  ```

  Now, this trick is only used for LiDAR-based detection methods.
twang's avatar
twang committed
160
161
162

### NuScenes

163
Download nuScenes V1.0 full dataset data [HERE](https://www.nuscenes.org/download). Prepare nuscenes data by running:
twang's avatar
twang committed
164
165
166
167
168

```bash
python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes
```

169
170
171
172
173
174
175
176
**Tips**:

- **Ready-made Annotations**. We have also provided NuScenes data annotation files generated offline [here](#summary-of-annotation-files). You could download them and place them under `data/nuscenes/`. However, if you want to use `ObjectSample` Augmentation in LiDAR-based detection methods, you should additionally generate groundtruth database files and annotations.

```bash
python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes --only-gt-databse
```

twang's avatar
twang committed
177
178
### Lyft

179
Download Lyft 3D detection data [HERE](https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/data). Prepare Lyft data by running:
twang's avatar
twang committed
180
181
182

```bash
python tools/create_data.py lyft --root-path ./data/lyft --out-dir ./data/lyft --extra-tag lyft --version v1.01
183
python tools/dataset_converters/lyft_data_fixer.py --version v1.01 --root-folder ./data/lyft
twang's avatar
twang committed
184
185
```

186
Note that we follow the original folder names for clear organization. Please rename the raw folders as shown above. Also note that the second command serves the purpose of fixing a corrupted lidar data file. Please refer to the [discussion](https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles/discussion/110000) for more details.
twang's avatar
twang committed
187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
### SemanticKITTI

Download SemanticKITTI dataset [HERE](http://semantic-kitti.org/dataset.html#download) and unzip all zip files.

Then generate info files by running:

```bash
python ./tools/create_data.py semantickitti --root-path ./data/semantickitti --out-dir ./data/semantickitti --extra-tag semantickitti
```

**Tips**:

- **Ready-made Annotations**. We have also provided SemanticKITTI data annotation files generated offline [here](#summary-of-annotation-files). You could download them and place them under `data/semantickitti/`.

202
203
### S3DIS, ScanNet and SUN RGB-D

204
To prepare S3DIS data, please see its [README](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/data/s3dis/README.md).
twang's avatar
twang committed
205

206
To prepare ScanNet data, please see its [README](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/data/scannet/README.md).
twang's avatar
twang committed
207

208
To prepare SUN RGB-D data, please see its [README](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/data/sunrgbd/README.md).
twang's avatar
twang committed
209

210
211
**Tips**: For S3DIS, ScanNet and SUN RGB-D datasets, we have also provided data annotation files generated offline [here](#summary-of-annotation-files). You could download them and place them under `data/${DATASET}/`. However, you also need to generate point cloud files and semantic/instance masks files (if it has) by yourself.

twang's avatar
twang committed
212
213
### Customized Datasets

214
215
216
217
218
219
220
For using custom datasets, please refer to [Customize Datasets](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/docs/en/advanced_guides/customize_dataset.md).

### Update data infos

If you have used v1.0.0rc1-v1.0.0rc4 mmdetection3d to create data infos before, and now you want to use the newest v1.1.0 mmdetection3d, you need to update the data infos file.

```bash
221
python tools/dataset_converters/update_infos_to_v2.py --dataset ${DATA_SET} --pkl-path ${PKL_PATH} --out-dir ${OUT_DIR}
222
223
```

224
225
226
- `--dataset` : Name of dataset.
- `--pkl-path` : Specify the data infos pkl file path.
- `--out-dir` : Output direction of the data infos pkl file.
227

228
Example:
229
230

```bash
231
python tools/dataset_converters/update_infos_to_v2.py --dataset kitti --pkl-path ./data/kitti/kitti_infos_trainval.pkl --out-dir ./data/kitti
232
```
233
234
235
236
237
238
239
240
241
242
243
244
245
246

### Summary of annotation files

We provide ready-made annotation files we generated offline for reference. You can directly use these files for convenice.

|                                                        Dataset                                                         |                                                                                                           Train annotation file                                                                                                           |                                                                                                        Val annotation file                                                                                                         |                                                    Test information file                                                     |
| :--------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------: |
|                                                         KITTI                                                          |                                                                  [kitti_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/kitti/kitti_infos_train.pkl)                                                                   |                                                                 [kitti_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/kitti/kitti_infos_val.pkl)                                                                 |               [kitti_infos_test](https://download.openmmlab.com/mmdetection3d/data/kitti/kitti_infos_test.pkl)               |
|                                                        NuScenes                                                        | [nuscenes_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/nuscenes/nuscenes_infos_train.pkl) [nuscenes_mini_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/nuscenes/nuscenes_mini_infos_train.pkl) | [nuscenes_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/nuscenes/nuscenes_infos_val.pkl)  [nuscenes_mini_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/nuscenes/nuscenes_mini_infos_val.pkl) |                                                                                                                              |
|                                                         Waymo                                                          |         [waymo_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/waymo/waymo_infos_train.pkl)  [waymo_mini_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/waymo/waymo_mini_infos_train.pkl)          |          [waymo_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/waymo/waymo_infos_val.pkl)  [waymo_mini_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/waymo/waymo_mini_infos_val.pkl)          |             [waymo_infos_test.pkl](https://download.openmmlab.com/mmdetection3d/data/waymo/waymo_infos_test.pkl)             |
| [Waymo-mini kitti-format data](https://download.openmmlab.com/mmdetection3d/data/waymo/waymo_mini_kitti_format.tar.gz) |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                    |                                                                                                                              |
|                                                       SUN RGB-D                                                        |                                                               [sunrgbd_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/sunrgbd/sunrgbd_infos_train.pkl)                                                                |                                                              [sunrgbd_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/sunrgbd/sunrgbd_infos_val.pkl)                                                              |                                                                                                                              |
|                                                        ScanNet                                                         |                                                               [scannet_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/scannet/scannet_infos_train.pkl)                                                                |                                                              [scannet_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/scannet/scannet_infos_val.pkl)                                                              |          [scannet_infos_test.pkl](https://download.openmmlab.com/mmdetection3d/data/scannet/scannet_infos_test.pkl)          |
|                                                     SemanticKitti                                                      |                                                      [semantickitti_infos_train.pkl](https://download.openmmlab.com/mmdetection3d/data/semantickitti/semantickitti_infos_train.pkl)                                                       |                                                     [semantickitti_infos_val.pkl](https://download.openmmlab.com/mmdetection3d/data/semantickitti/semantickitti_infos_val.pkl)                                                     | [semantickitti_infos_test.pkl](https://download.openmmlab.com/mmdetection3d/data/semantickitti/semantickitti_infos_test.pkl) |