parta2_rpn_head.py 9.5 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
2
3
4
5
6
7
8
from __future__ import division

import numpy as np
import torch

from mmdet3d.core import box_torch_ops, boxes3d_to_bev_torch_lidar
from mmdet3d.ops.iou3d.iou3d_utils import nms_gpu, nms_normal_gpu
from mmdet.models import HEADS
zhangwenwei's avatar
zhangwenwei committed
9
from .anchor3d_head import Anchor3DHead
wuyuefeng's avatar
wuyuefeng committed
10
11


12
@HEADS.register_module()
zhangwenwei's avatar
zhangwenwei committed
13
14
15
16
17
18
19
20
21
22
23
24
25
class PartA2RPNHead(Anchor3DHead):
    """RPN head for PartA2

    Note:
        The main difference between the PartA2 RPN head and the Anchor3DHead
        lies in their output during inference. PartA2 RPN head further returns
        the original classification score for the second stage since the bbox
        head in RoI head does not do classification task.

        Different from RPN heads in 2D detectors, this RPN head does
        multi-class classification task and uses FocalLoss like the SECOND and
        PointPillars do. But this head uses class agnostic nms rather than
        multi-class nms.
wuyuefeng's avatar
wuyuefeng committed
26
27

    Args:
zhangwenwei's avatar
zhangwenwei committed
28
        num_classes (int): Number of classes.
wuyuefeng's avatar
wuyuefeng committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
        in_channels (int): Number of channels in the input feature map.
        train_cfg (dict): train configs
        test_cfg (dict): test configs
        feat_channels (int): Number of channels of the feature map.
        use_direction_classifier (bool): Whether to add a direction classifier.
        anchor_generator(dict): Config dict of anchor generator.
        assigner_per_size (bool): Whether to do assignment for each separate
            anchor size.
        assign_per_class (bool): Whether to do assignment for each class.
        diff_rad_by_sin (bool): Whether to change the difference into sin
            difference for box regression loss.
        dir_offset (float | int): The offset of BEV rotation angles
            (TODO: may be moved into box coder)
        dirlimit_offset (float | int): The limited range of BEV rotation angles
            (TODO: may be moved into box coder)
        box_coder (dict): Config dict of box coders.
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
        loss_dir (dict): Config of direction classifier loss.
zhangwenwei's avatar
zhangwenwei committed
48
    """
wuyuefeng's avatar
wuyuefeng committed
49
50

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
51
                 num_classes,
wuyuefeng's avatar
wuyuefeng committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
                 in_channels,
                 train_cfg,
                 test_cfg,
                 feat_channels=256,
                 use_direction_classifier=True,
                 anchor_generator=dict(
                     type='Anchor3DRangeGenerator',
                     range=[0, -39.68, -1.78, 69.12, 39.68, -1.78],
                     strides=[2],
                     sizes=[[1.6, 3.9, 1.56]],
                     rotations=[0, 1.57],
                     custom_values=[],
                     reshape_out=False),
                 assigner_per_size=False,
                 assign_per_class=False,
                 diff_rad_by_sin=True,
                 dir_offset=0,
                 dir_limit_offset=1,
                 bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
                 loss_dir=dict(type='CrossEntropyLoss', loss_weight=0.2)):
zhangwenwei's avatar
zhangwenwei committed
78
        super().__init__(num_classes, in_channels, train_cfg, test_cfg,
wuyuefeng's avatar
wuyuefeng committed
79
                         feat_channels, use_direction_classifier,
zhangwenwei's avatar
zhangwenwei committed
80
81
82
                         anchor_generator, assigner_per_size, assign_per_class,
                         diff_rad_by_sin, dir_offset, dir_limit_offset,
                         bbox_coder, loss_cls, loss_bbox, loss_dir)
wuyuefeng's avatar
wuyuefeng committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

    def get_bboxes_single(self,
                          cls_scores,
                          bbox_preds,
                          dir_cls_preds,
                          mlvl_anchors,
                          input_meta,
                          cfg,
                          rescale=False):
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
        mlvl_bboxes = []
        mlvl_max_scores = []
        mlvl_label_pred = []
        mlvl_dir_scores = []
        mlvl_cls_score = []
        for cls_score, bbox_pred, dir_cls_pred, anchors in zip(
                cls_scores, bbox_preds, dir_cls_preds, mlvl_anchors):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
            assert cls_score.size()[-2:] == dir_cls_pred.size()[-2:]
            dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2)
            dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1]

            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.num_classes)

            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                scores = cls_score.softmax(-1)
            bbox_pred = bbox_pred.permute(1, 2,
                                          0).reshape(-1, self.box_code_size)

            nms_pre = cfg.get('nms_pre', -1)
            if self.use_sigmoid_cls:
                max_scores, pred_labels = scores.max(dim=1)
            else:
                max_scores, pred_labels = scores[:, :-1].max(dim=1)
            # get topk
            if nms_pre > 0 and scores.shape[0] > nms_pre:
                topk_scores, topk_inds = max_scores.topk(nms_pre)
                anchors = anchors[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                max_scores = topk_scores
zhangwenwei's avatar
zhangwenwei committed
126
                cls_score = scores[topk_inds, :]
wuyuefeng's avatar
wuyuefeng committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
                dir_cls_score = dir_cls_score[topk_inds]
                pred_labels = pred_labels[topk_inds]

            bboxes = self.bbox_coder.decode(anchors, bbox_pred)
            mlvl_bboxes.append(bboxes)
            mlvl_max_scores.append(max_scores)
            mlvl_cls_score.append(cls_score)
            mlvl_label_pred.append(pred_labels)
            mlvl_dir_scores.append(dir_cls_score)

        mlvl_bboxes = torch.cat(mlvl_bboxes)
        mlvl_bboxes_for_nms = boxes3d_to_bev_torch_lidar(mlvl_bboxes)
        mlvl_max_scores = torch.cat(mlvl_max_scores)
        mlvl_label_pred = torch.cat(mlvl_label_pred)
        mlvl_dir_scores = torch.cat(mlvl_dir_scores)
zhangwenwei's avatar
zhangwenwei committed
142
143
144
145
146
147
        # shape [k, num_class] before sigmoid
        # PartA2 need to keep raw classification score
        # becase the bbox head in the second stage does not have
        # classification branch,
        # roi head need this score as classification score
        mlvl_cls_score = torch.cat(mlvl_cls_score)
wuyuefeng's avatar
wuyuefeng committed
148
149
150
151
152

        score_thr = cfg.get('score_thr', 0)
        result = self.class_agnostic_nms(mlvl_bboxes, mlvl_bboxes_for_nms,
                                         mlvl_max_scores, mlvl_label_pred,
                                         mlvl_cls_score, mlvl_dir_scores,
153
154
                                         score_thr, cfg.nms_post, cfg,
                                         input_meta)
wuyuefeng's avatar
wuyuefeng committed
155
156
157
158
159

        return result

    def class_agnostic_nms(self, mlvl_bboxes, mlvl_bboxes_for_nms,
                           mlvl_max_scores, mlvl_label_pred, mlvl_cls_score,
160
161
                           mlvl_dir_scores, score_thr, max_num, cfg,
                           input_meta):
wuyuefeng's avatar
wuyuefeng committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        bboxes = []
        scores = []
        labels = []
        dir_scores = []
        cls_scores = []
        score_thr_inds = mlvl_max_scores > score_thr
        _scores = mlvl_max_scores[score_thr_inds]
        _bboxes_for_nms = mlvl_bboxes_for_nms[score_thr_inds, :]
        if cfg.use_rotate_nms:
            nms_func = nms_gpu
        else:
            nms_func = nms_normal_gpu
        selected = nms_func(_bboxes_for_nms, _scores, cfg.nms_thr)

        _mlvl_bboxes = mlvl_bboxes[score_thr_inds, :]
        _mlvl_dir_scores = mlvl_dir_scores[score_thr_inds]
        _mlvl_label_pred = mlvl_label_pred[score_thr_inds]
        _mlvl_cls_score = mlvl_cls_score[score_thr_inds]

        if len(selected) > 0:
            bboxes.append(_mlvl_bboxes[selected])
            scores.append(_scores[selected])
            labels.append(_mlvl_label_pred[selected])
            cls_scores.append(_mlvl_cls_score[selected])
            dir_scores.append(_mlvl_dir_scores[selected])
            dir_rot = box_torch_ops.limit_period(
                bboxes[-1][..., 6] - self.dir_offset, self.dir_limit_offset,
                np.pi)
            bboxes[-1][..., 6] = (
                dir_rot + self.dir_offset +
                np.pi * dir_scores[-1].to(bboxes[-1].dtype))

        if bboxes:
            bboxes = torch.cat(bboxes, dim=0)
            scores = torch.cat(scores, dim=0)
            cls_scores = torch.cat(cls_scores, dim=0)
            labels = torch.cat(labels, dim=0)
            dir_scores = torch.cat(dir_scores, dim=0)
            if bboxes.shape[0] > max_num:
                _, inds = scores.sort(descending=True)
                inds = inds[:max_num]
                bboxes = bboxes[inds, :]
                labels = labels[inds]
                scores = scores[inds]
                cls_scores = cls_scores[inds]
207
208
            bboxes = input_meta['box_type_3d'](
                bboxes, box_dim=self.box_code_size)
wuyuefeng's avatar
wuyuefeng committed
209
            return dict(
zhangwenwei's avatar
zhangwenwei committed
210
211
212
                boxes_3d=bboxes,
                scores_3d=scores,
                labels_3d=labels,
wuyuefeng's avatar
wuyuefeng committed
213
                cls_preds=cls_scores  # raw scores [max_num, cls_num]
wuyuefeng's avatar
wuyuefeng committed
214
215
216
            )
        else:
            return dict(
217
218
219
                boxes_3d=input_meta['box_type_3d'](
                    mlvl_bboxes.new_zeros([0, self.box_code_size]),
                    box_dim=self.box_code_size),
zhangwenwei's avatar
zhangwenwei committed
220
221
                scores_3d=mlvl_bboxes.new_zeros([0]),
                labels_3d=mlvl_bboxes.new_zeros([0]),
wuyuefeng's avatar
wuyuefeng committed
222
                cls_preds=mlvl_bboxes.new_zeros([0, mlvl_cls_score.shape[-1]]))