anchor3d_head.py 15.7 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import numpy as np
import torch
import torch.nn as nn
4
from mmcv.cnn import bias_init_with_prob, normal_init
zhangwenwei's avatar
zhangwenwei committed
5

zhangwenwei's avatar
zhangwenwei committed
6
from mmdet3d.core import (PseudoSampler, box3d_multiclass_nms, box_torch_ops,
zhangwenwei's avatar
zhangwenwei committed
7
8
9
                          boxes3d_to_bev_torch_lidar, build_anchor_generator,
                          build_assigner, build_bbox_coder, build_sampler,
                          multi_apply)
zhangwenwei's avatar
zhangwenwei committed
10
from mmdet.models import HEADS
zhangwenwei's avatar
zhangwenwei committed
11
12
13
14
from ..builder import build_loss
from .train_mixins import AnchorTrainMixin


15
@HEADS.register_module()
zhangwenwei's avatar
zhangwenwei committed
16
17
class Anchor3DHead(nn.Module, AnchorTrainMixin):
    """Anchor head for SECOND/PointPillars/MVXNet/PartA2.
18

zhangwenwei's avatar
zhangwenwei committed
19
    Args:
zhangwenwei's avatar
zhangwenwei committed
20
        num_classes (int): Number of classes.
zhangwenwei's avatar
zhangwenwei committed
21
        in_channels (int): Number of channels in the input feature map.
22
23
        train_cfg (dict): train configs
        test_cfg (dict): test configs
zhangwenwei's avatar
zhangwenwei committed
24
        feat_channels (int): Number of channels of the feature map.
25
26
27
28
29
30
31
32
33
34
35
36
        use_direction_classifier (bool): Whether to add a direction classifier.
        anchor_generator(dict): Config dict of anchor generator.
        assigner_per_size (bool): Whether to do assignment for each separate
            anchor size.
        assign_per_class (bool): Whether to do assignment for each class.
        diff_rad_by_sin (bool): Whether to change the difference into sin
            difference for box regression loss.
        dir_offset (float | int): The offset of BEV rotation angles
            (TODO: may be moved into box coder)
        dirlimit_offset (float | int): The limited range of BEV rotation angles
            (TODO: may be moved into box coder)
        box_coder (dict): Config dict of box coders.
zhangwenwei's avatar
zhangwenwei committed
37
38
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
39
        loss_dir (dict): Config of direction classifier loss.
zhangwenwei's avatar
zhangwenwei committed
40
    """
zhangwenwei's avatar
zhangwenwei committed
41
42

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
43
                 num_classes,
zhangwenwei's avatar
zhangwenwei committed
44
45
46
47
48
                 in_channels,
                 train_cfg,
                 test_cfg,
                 feat_channels=256,
                 use_direction_classifier=True,
49
50
51
52
53
54
55
56
                 anchor_generator=dict(
                     type='Anchor3DRangeGenerator',
                     range=[0, -39.68, -1.78, 69.12, 39.68, -1.78],
                     strides=[2],
                     sizes=[[1.6, 3.9, 1.56]],
                     rotations=[0, 1.57],
                     custom_values=[],
                     reshape_out=False),
zhangwenwei's avatar
zhangwenwei committed
57
58
59
60
61
                 assigner_per_size=False,
                 assign_per_class=False,
                 diff_rad_by_sin=True,
                 dir_offset=0,
                 dir_limit_offset=1,
62
                 bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
zhangwenwei's avatar
zhangwenwei committed
63
64
65
66
67
68
69
70
71
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
                 loss_dir=dict(type='CrossEntropyLoss', loss_weight=0.2)):
        super().__init__()
        self.in_channels = in_channels
zhangwenwei's avatar
zhangwenwei committed
72
        self.num_classes = num_classes
zhangwenwei's avatar
zhangwenwei committed
73
74
75
76
77
78
79
80
81
82
83
        self.feat_channels = feat_channels
        self.diff_rad_by_sin = diff_rad_by_sin
        self.use_direction_classifier = use_direction_classifier
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.assigner_per_size = assigner_per_size
        self.assign_per_class = assign_per_class
        self.dir_offset = dir_offset
        self.dir_limit_offset = dir_limit_offset

        # build anchor generator
84
        self.anchor_generator = build_anchor_generator(anchor_generator)
zhangwenwei's avatar
zhangwenwei committed
85
        # In 3D detection, the anchor stride is connected with anchor size
86
        self.num_anchors = self.anchor_generator.num_base_anchors
zhangwenwei's avatar
zhangwenwei committed
87
88
89
        # build box coder
        self.bbox_coder = build_bbox_coder(bbox_coder)
        self.box_code_size = self.bbox_coder.code_size
zhangwenwei's avatar
zhangwenwei committed
90

zhangwenwei's avatar
zhangwenwei committed
91
        # build loss function
zhangwenwei's avatar
zhangwenwei committed
92
        self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
zhangwenwei's avatar
zhangwenwei committed
93
        self.sampling = loss_cls['type'] not in ['FocalLoss', 'GHMC']
zhangwenwei's avatar
zhangwenwei committed
94
95
96
97
98
99
100
        if not self.use_sigmoid_cls:
            self.num_classes += 1
        self.loss_cls = build_loss(loss_cls)
        self.loss_bbox = build_loss(loss_bbox)
        self.loss_dir = build_loss(loss_dir)
        self.fp16_enabled = False

zhangwenwei's avatar
zhangwenwei committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        self._init_layers()
        self._init_assigner_sampler()

    def _init_assigner_sampler(self):
        if self.train_cfg is None:
            return

        if self.sampling:
            self.bbox_sampler = build_sampler(self.train_cfg.sampler)
        else:
            self.bbox_sampler = PseudoSampler()
        if isinstance(self.train_cfg.assigner, dict):
            self.bbox_assigner = build_assigner(self.train_cfg.assigner)
        elif isinstance(self.train_cfg.assigner, list):
            self.bbox_assigner = [
                build_assigner(res) for res in self.train_cfg.assigner
            ]

zhangwenwei's avatar
zhangwenwei committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    def _init_layers(self):
        self.cls_out_channels = self.num_anchors * self.num_classes
        self.conv_cls = nn.Conv2d(self.feat_channels, self.cls_out_channels, 1)
        self.conv_reg = nn.Conv2d(self.feat_channels,
                                  self.num_anchors * self.box_code_size, 1)
        if self.use_direction_classifier:
            self.conv_dir_cls = nn.Conv2d(self.feat_channels,
                                          self.num_anchors * 2, 1)

    def init_weights(self):
        bias_cls = bias_init_with_prob(0.01)
        normal_init(self.conv_cls, std=0.01, bias=bias_cls)
        normal_init(self.conv_reg, std=0.01)

    def forward_single(self, x):
        cls_score = self.conv_cls(x)
        bbox_pred = self.conv_reg(x)
        dir_cls_preds = None
        if self.use_direction_classifier:
            dir_cls_preds = self.conv_dir_cls(x)
        return cls_score, bbox_pred, dir_cls_preds

    def forward(self, feats):
        return multi_apply(self.forward_single, feats)

144
    def get_anchors(self, featmap_sizes, input_metas, device='cuda'):
zhangwenwei's avatar
zhangwenwei committed
145
        """Get anchors according to feature map sizes.
zhangwenwei's avatar
zhangwenwei committed
146

zhangwenwei's avatar
zhangwenwei committed
147
148
149
        Args:
            featmap_sizes (list[tuple]): Multi-level feature map sizes.
            input_metas (list[dict]): contain pcd and img's meta info.
zhangwenwei's avatar
zhangwenwei committed
150
151
            device (str): device of current module

zhangwenwei's avatar
zhangwenwei committed
152
153
154
155
156
157
        Returns:
            tuple: anchors of each image, valid flags of each image
        """
        num_imgs = len(input_metas)
        # since feature map sizes of all images are the same, we only compute
        # anchors for one time
158
159
        multi_level_anchors = self.anchor_generator.grid_anchors(
            featmap_sizes, device=device)
zhangwenwei's avatar
zhangwenwei committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        anchor_list = [multi_level_anchors for _ in range(num_imgs)]
        return anchor_list

    def loss_single(self, cls_score, bbox_pred, dir_cls_preds, labels,
                    label_weights, bbox_targets, bbox_weights, dir_targets,
                    dir_weights, num_total_samples):
        # classification loss
        if num_total_samples is None:
            num_total_samples = int(cls_score.shape[0])
        labels = labels.reshape(-1)
        label_weights = label_weights.reshape(-1)
        cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.num_classes)
        loss_cls = self.loss_cls(
            cls_score, labels, label_weights, avg_factor=num_total_samples)

        # regression loss
        bbox_targets = bbox_targets.reshape(-1, self.box_code_size)
        bbox_weights = bbox_weights.reshape(-1, self.box_code_size)
        code_weight = self.train_cfg.get('code_weight', None)

        if code_weight:
            bbox_weights = bbox_weights * bbox_weights.new_tensor(code_weight)
        bbox_pred = bbox_pred.permute(0, 2, 3,
                                      1).reshape(-1, self.box_code_size)
        if self.diff_rad_by_sin:
            bbox_pred, bbox_targets = self.add_sin_difference(
                bbox_pred, bbox_targets)
        loss_bbox = self.loss_bbox(
            bbox_pred,
            bbox_targets,
            bbox_weights,
            avg_factor=num_total_samples)

        # direction classification loss
        loss_dir = None
        if self.use_direction_classifier:
            dir_cls_preds = dir_cls_preds.permute(0, 2, 3, 1).reshape(-1, 2)
            dir_targets = dir_targets.reshape(-1)
            dir_weights = dir_weights.reshape(-1)
            loss_dir = self.loss_dir(
                dir_cls_preds,
                dir_targets,
                dir_weights,
                avg_factor=num_total_samples)

        return loss_cls, loss_bbox, loss_dir

    @staticmethod
    def add_sin_difference(boxes1, boxes2):
zhangwenwei's avatar
zhangwenwei committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        """Convert the rotation difference to difference in sine function

        Args:
            boxes1 (Tensor): shape (NxC), where C>=7 and the 7th dimension is
                rotation dimension
            boxes2 (Tensor): shape (NxC), where C>=7 and the 7th dimension is
                rotation dimension

        Returns:
            tuple: (boxes1, boxes2) whose 7th dimensions are changed
        """
        rad_pred_encoding = torch.sin(boxes1[..., 6:7]) * torch.cos(
            boxes2[..., 6:7])
        rad_tg_encoding = torch.cos(boxes1[..., 6:7]) * torch.sin(boxes2[...,
                                                                         6:7])
        boxes1 = torch.cat(
            [boxes1[..., :6], rad_pred_encoding, boxes1[..., 7:]], dim=-1)
        boxes2 = torch.cat([boxes2[..., :6], rad_tg_encoding, boxes2[..., 7:]],
                           dim=-1)
zhangwenwei's avatar
zhangwenwei committed
228
229
230
231
232
233
234
235
236
237
238
        return boxes1, boxes2

    def loss(self,
             cls_scores,
             bbox_preds,
             dir_cls_preds,
             gt_bboxes,
             gt_labels,
             input_metas,
             gt_bboxes_ignore=None):
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
239
240
241
242
        assert len(featmap_sizes) == self.anchor_generator.num_levels
        device = cls_scores[0].device
        anchor_list = self.get_anchors(
            featmap_sizes, input_metas, device=device)
zhangwenwei's avatar
zhangwenwei committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
        cls_reg_targets = self.anchor_target_3d(
            anchor_list,
            gt_bboxes,
            input_metas,
            gt_bboxes_ignore_list=gt_bboxes_ignore,
            gt_labels_list=gt_labels,
            num_classes=self.num_classes,
            label_channels=label_channels,
            sampling=self.sampling)

        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         dir_targets_list, dir_weights_list, num_total_pos,
         num_total_neg) = cls_reg_targets
        num_total_samples = (
            num_total_pos + num_total_neg if self.sampling else num_total_pos)

        # num_total_samples = None
        losses_cls, losses_bbox, losses_dir = multi_apply(
            self.loss_single,
            cls_scores,
            bbox_preds,
            dir_cls_preds,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            dir_targets_list,
            dir_weights_list,
            num_total_samples=num_total_samples)
        return dict(
wuyuefeng's avatar
wuyuefeng committed
276
277
278
            loss_rpn_cls=losses_cls,
            loss_rpn_bbox=losses_bbox,
            loss_rpn_dir=losses_dir)
zhangwenwei's avatar
zhangwenwei committed
279
280
281
282
283
284

    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   dir_cls_preds,
                   input_metas,
zhangwenwei's avatar
zhangwenwei committed
285
                   cfg=None,
zhangwenwei's avatar
zhangwenwei committed
286
287
288
289
                   rescale=False):
        assert len(cls_scores) == len(bbox_preds)
        assert len(cls_scores) == len(dir_cls_preds)
        num_levels = len(cls_scores)
290
291
        featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
        device = cls_scores[0].device
292
        mlvl_anchors = self.anchor_generator.grid_anchors(
293
            featmap_sizes, device=device)
zhangwenwei's avatar
zhangwenwei committed
294
        mlvl_anchors = [
295
            anchor.reshape(-1, self.box_code_size) for anchor in mlvl_anchors
zhangwenwei's avatar
zhangwenwei committed
296
        ]
297

zhangwenwei's avatar
zhangwenwei committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        result_list = []
        for img_id in range(len(input_metas)):
            cls_score_list = [
                cls_scores[i][img_id].detach() for i in range(num_levels)
            ]
            bbox_pred_list = [
                bbox_preds[i][img_id].detach() for i in range(num_levels)
            ]
            dir_cls_pred_list = [
                dir_cls_preds[i][img_id].detach() for i in range(num_levels)
            ]

            input_meta = input_metas[img_id]
            proposals = self.get_bboxes_single(cls_score_list, bbox_pred_list,
                                               dir_cls_pred_list, mlvl_anchors,
zhangwenwei's avatar
zhangwenwei committed
313
                                               input_meta, cfg, rescale)
zhangwenwei's avatar
zhangwenwei committed
314
315
316
317
318
319
320
321
322
            result_list.append(proposals)
        return result_list

    def get_bboxes_single(self,
                          cls_scores,
                          bbox_preds,
                          dir_cls_preds,
                          mlvl_anchors,
                          input_meta,
zhangwenwei's avatar
zhangwenwei committed
323
                          cfg=None,
zhangwenwei's avatar
zhangwenwei committed
324
                          rescale=False):
zhangwenwei's avatar
zhangwenwei committed
325
        cfg = self.test_cfg if cfg is None else cfg
zhangwenwei's avatar
zhangwenwei committed
326
327
328
329
330
331
332
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_dir_scores = []
        for cls_score, bbox_pred, dir_cls_pred, anchors in zip(
                cls_scores, bbox_preds, dir_cls_preds, mlvl_anchors):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
zhangwenwei's avatar
zhangwenwei committed
333
334
335
            assert cls_score.size()[-2:] == dir_cls_pred.size()[-2:]
            dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2)
            dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1]
zhangwenwei's avatar
zhangwenwei committed
336
337
338
339
340
341
342
343
344
345

            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.num_classes)
            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                scores = cls_score.softmax(-1)
            bbox_pred = bbox_pred.permute(1, 2,
                                          0).reshape(-1, self.box_code_size)

zhangwenwei's avatar
zhangwenwei committed
346
347
            nms_pre = cfg.get('nms_pre', -1)
            if nms_pre > 0 and scores.shape[0] > nms_pre:
zhangwenwei's avatar
zhangwenwei committed
348
349
350
                if self.use_sigmoid_cls:
                    max_scores, _ = scores.max(dim=1)
                else:
zhangwenwei's avatar
zhangwenwei committed
351
352
353
354
355
356
357
                    max_scores, _ = scores[:, :-1].max(dim=1)
                _, topk_inds = max_scores.topk(nms_pre)
                anchors = anchors[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                scores = scores[topk_inds, :]
                dir_cls_score = dir_cls_score[topk_inds]

358
            bboxes = self.bbox_coder.decode(anchors, bbox_pred)
zhangwenwei's avatar
zhangwenwei committed
359
360
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
zhangwenwei's avatar
zhangwenwei committed
361
            mlvl_dir_scores.append(dir_cls_score)
zhangwenwei's avatar
zhangwenwei committed
362
363

        mlvl_bboxes = torch.cat(mlvl_bboxes)
zhangwenwei's avatar
zhangwenwei committed
364
        mlvl_bboxes_for_nms = boxes3d_to_bev_torch_lidar(mlvl_bboxes)
zhangwenwei's avatar
zhangwenwei committed
365
366
367
        mlvl_scores = torch.cat(mlvl_scores)
        mlvl_dir_scores = torch.cat(mlvl_dir_scores)

zhangwenwei's avatar
zhangwenwei committed
368
369
370
371
372
373
374
375
376
377
378
        if self.use_sigmoid_cls:
            # Add a dummy background class to the front when using sigmoid
            padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
            mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)

        score_thr = cfg.get('score_thr', 0)
        results = box3d_multiclass_nms(mlvl_bboxes, mlvl_bboxes_for_nms,
                                       mlvl_scores, score_thr, cfg.max_num,
                                       cfg, mlvl_dir_scores)
        bboxes, scores, labels, dir_scores = results
        if bboxes.shape[0] > 0:
zhangwenwei's avatar
zhangwenwei committed
379
            dir_rot = box_torch_ops.limit_period(
zhangwenwei's avatar
zhangwenwei committed
380
381
                bboxes[..., 6] - self.dir_offset, self.dir_limit_offset, np.pi)
            bboxes[..., 6] = (
zhangwenwei's avatar
zhangwenwei committed
382
                dir_rot + self.dir_offset +
zhangwenwei's avatar
zhangwenwei committed
383
                np.pi * dir_scores.to(bboxes.dtype))
384
        bboxes = input_meta['box_type_3d'](bboxes, box_dim=self.box_code_size)
zhangwenwei's avatar
zhangwenwei committed
385
        return bboxes, scores, labels