nuscenes_dataset.py 15.1 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
import os.path as osp
import tempfile

import mmcv
import numpy as np
import pyquaternion
from nuscenes.utils.data_classes import Box as NuScenesBox

from mmdet.datasets import DATASETS
10
from ..core.bbox import LiDARInstance3DBoxes
zhangwenwei's avatar
zhangwenwei committed
11
from .custom_3d import Custom3DDataset
zhangwenwei's avatar
zhangwenwei committed
12
13


14
@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
15
class NuScenesDataset(Custom3DDataset):
zhangwenwei's avatar
zhangwenwei committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    NameMapping = {
        'movable_object.barrier': 'barrier',
        'vehicle.bicycle': 'bicycle',
        'vehicle.bus.bendy': 'bus',
        'vehicle.bus.rigid': 'bus',
        'vehicle.car': 'car',
        'vehicle.construction': 'construction_vehicle',
        'vehicle.motorcycle': 'motorcycle',
        'human.pedestrian.adult': 'pedestrian',
        'human.pedestrian.child': 'pedestrian',
        'human.pedestrian.construction_worker': 'pedestrian',
        'human.pedestrian.police_officer': 'pedestrian',
        'movable_object.trafficcone': 'traffic_cone',
        'vehicle.trailer': 'trailer',
        'vehicle.truck': 'truck'
    }
    DefaultAttribute = {
        'car': 'vehicle.parked',
        'pedestrian': 'pedestrian.moving',
        'trailer': 'vehicle.parked',
        'truck': 'vehicle.parked',
        'bus': 'vehicle.moving',
        'motorcycle': 'cycle.without_rider',
        'construction_vehicle': 'vehicle.parked',
        'bicycle': 'cycle.without_rider',
        'barrier': '',
        'traffic_cone': '',
    }
    AttrMapping = {
        'cycle.with_rider': 0,
        'cycle.without_rider': 1,
        'pedestrian.moving': 2,
        'pedestrian.standing': 3,
        'pedestrian.sitting_lying_down': 4,
        'vehicle.moving': 5,
        'vehicle.parked': 6,
        'vehicle.stopped': 7,
    }
    AttrMapping_rev = [
        'cycle.with_rider',
        'cycle.without_rider',
        'pedestrian.moving',
        'pedestrian.standing',
        'pedestrian.sitting_lying_down',
        'vehicle.moving',
        'vehicle.parked',
        'vehicle.stopped',
    ]
    CLASSES = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle',
               'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
               'barrier')

    def __init__(self,
                 ann_file,
                 pipeline=None,
zhangwenwei's avatar
zhangwenwei committed
71
72
                 data_root=None,
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
73
74
75
                 load_interval=1,
                 with_velocity=True,
                 modality=None,
76
77
78
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
                 test_mode=False,
zhangwenwei's avatar
zhangwenwei committed
79
                 eval_version='detection_cvpr_2019'):
zhangwenwei's avatar
zhangwenwei committed
80
        self.load_interval = load_interval
zhangwenwei's avatar
zhangwenwei committed
81
82
83
84
85
86
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
87
88
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
zhangwenwei's avatar
zhangwenwei committed
89
            test_mode=test_mode)
zhangwenwei's avatar
zhangwenwei committed
90
91
92
93
94
95

        self.with_velocity = with_velocity
        self.eval_version = eval_version
        from nuscenes.eval.detection.config import config_factory
        self.eval_detection_configs = config_factory(self.eval_version)

zhangwenwei's avatar
zhangwenwei committed
96
97
        if self.modality is None:
            self.modality = dict(
zhangwenwei's avatar
zhangwenwei committed
98
99
100
101
102
103
104
                use_camera=False,
                use_lidar=True,
                use_radar=False,
                use_map=False,
                use_external=False,
            )

zhangwenwei's avatar
zhangwenwei committed
105
106
107
108
109
110
111
    def load_annotations(self, ann_file):
        data = mmcv.load(ann_file)
        data_infos = list(sorted(data['infos'], key=lambda e: e['timestamp']))
        data_infos = data_infos[::self.load_interval]
        self.metadata = data['metadata']
        self.version = self.metadata['version']
        return data_infos
zhangwenwei's avatar
zhangwenwei committed
112

zhangwenwei's avatar
zhangwenwei committed
113
    def get_data_info(self, index):
zhangwenwei's avatar
zhangwenwei committed
114
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
115

zhangwenwei's avatar
zhangwenwei committed
116
        # standard protocal modified from SECOND.Pytorch
zhangwenwei's avatar
zhangwenwei committed
117
118
        input_dict = dict(
            sample_idx=info['token'],
zhangwenwei's avatar
zhangwenwei committed
119
120
121
            pts_filename=info['lidar_path'],
            sweeps=info['sweeps'],
            timestamp=info['timestamp'] / 1e6,
zhangwenwei's avatar
zhangwenwei committed
122
123
124
125
126
127
        )

        if self.modality['use_camera']:
            image_paths = []
            lidar2img_rts = []
            for cam_type, cam_info in info['cams'].items():
zhangwenwei's avatar
zhangwenwei committed
128
                image_paths.append(cam_info['data_path'])
zhangwenwei's avatar
zhangwenwei committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
                # obtain lidar to image transformation matrix
                lidar2cam_r = np.linalg.inv(cam_info['sensor2lidar_rotation'])
                lidar2cam_t = cam_info[
                    'sensor2lidar_translation'] @ lidar2cam_r.T
                lidar2cam_rt = np.eye(4)
                lidar2cam_rt[:3, :3] = lidar2cam_r.T
                lidar2cam_rt[3, :3] = -lidar2cam_t
                intrinsic = cam_info['cam_intrinsic']
                viewpad = np.eye(4)
                viewpad[:intrinsic.shape[0], :intrinsic.shape[1]] = intrinsic
                lidar2img_rt = (viewpad @ lidar2cam_rt.T)
                lidar2img_rts.append(lidar2img_rt)

            input_dict.update(
                dict(
zhangwenwei's avatar
zhangwenwei committed
144
                    img_filename=image_paths,
zhangwenwei's avatar
zhangwenwei committed
145
146
147
                    lidar2img=lidar2img_rts,
                ))

zhangwenwei's avatar
zhangwenwei committed
148
        if not self.test_mode:
zhangwenwei's avatar
zhangwenwei committed
149
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
150
            input_dict['ann_info'] = annos
zhangwenwei's avatar
zhangwenwei committed
151
152
153
154

        return input_dict

    def get_ann_info(self, index):
zhangwenwei's avatar
zhangwenwei committed
155
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
156
157
158
159
        # filter out bbox containing no points
        mask = info['num_lidar_pts'] > 0
        gt_bboxes_3d = info['gt_boxes'][mask]
        gt_names_3d = info['gt_names'][mask]
zhangwenwei's avatar
zhangwenwei committed
160
161
162
163
164
165
166
        gt_labels_3d = []
        for cat in gt_names_3d:
            if cat in self.CLASSES:
                gt_labels_3d.append(self.CLASSES.index(cat))
            else:
                gt_labels_3d.append(-1)
        gt_labels_3d = np.array(gt_labels_3d)
zhangwenwei's avatar
zhangwenwei committed
167
168
169
170
171
172
173

        if self.with_velocity:
            gt_velocity = info['gt_velocity'][mask]
            nan_mask = np.isnan(gt_velocity[:, 0])
            gt_velocity[nan_mask] = [0.0, 0.0]
            gt_bboxes_3d = np.concatenate([gt_bboxes_3d, gt_velocity], axis=-1)

zhangwenwei's avatar
zhangwenwei committed
174
175
176
177
178
        # the nuscenes box center is [0.5, 0.5, 0.5], we keep it
        # the same as KITTI [0.5, 0.5, 0]
        gt_bboxes_3d = LiDARInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
179
            origin=[0.5, 0.5, 0.5]).convert_to(self.box_mode_3d)
zhangwenwei's avatar
zhangwenwei committed
180

zhangwenwei's avatar
zhangwenwei committed
181
182
        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
183
            gt_labels_3d=gt_labels_3d,
zhangwenwei's avatar
zhangwenwei committed
184
185
186
187
188
        )
        return anns_results

    def _format_bbox(self, results, jsonfile_prefix=None):
        nusc_annos = {}
zhangwenwei's avatar
zhangwenwei committed
189
        mapped_class_names = self.CLASSES
zhangwenwei's avatar
zhangwenwei committed
190

zhangwenwei's avatar
zhangwenwei committed
191
        print('Start to convert detection format...')
zhangwenwei's avatar
zhangwenwei committed
192
        for sample_id, det in enumerate(mmcv.track_iter_progress(results)):
zhangwenwei's avatar
zhangwenwei committed
193
            annos = []
zhangwenwei's avatar
zhangwenwei committed
194
195
196
197
            boxes = output_to_nusc_box(det)
            sample_token = self.data_infos[sample_id]['token']
            boxes = lidar_nusc_box_to_global(self.data_infos[sample_id], boxes,
                                             mapped_class_names,
zhangwenwei's avatar
zhangwenwei committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
                                             self.eval_detection_configs,
                                             self.eval_version)
            for i, box in enumerate(boxes):
                name = mapped_class_names[box.label]
                if np.sqrt(box.velocity[0]**2 + box.velocity[1]**2) > 0.2:
                    if name in [
                            'car',
                            'construction_vehicle',
                            'bus',
                            'truck',
                            'trailer',
                    ]:
                        attr = 'vehicle.moving'
                    elif name in ['bicycle', 'motorcycle']:
                        attr = 'cycle.with_rider'
                    else:
                        attr = NuScenesDataset.DefaultAttribute[name]
                else:
                    if name in ['pedestrian']:
                        attr = 'pedestrian.standing'
                    elif name in ['bus']:
                        attr = 'vehicle.stopped'
                    else:
                        attr = NuScenesDataset.DefaultAttribute[name]

                nusc_anno = dict(
zhangwenwei's avatar
zhangwenwei committed
224
                    sample_token=sample_token,
zhangwenwei's avatar
zhangwenwei committed
225
226
227
228
229
230
231
232
                    translation=box.center.tolist(),
                    size=box.wlh.tolist(),
                    rotation=box.orientation.elements.tolist(),
                    velocity=box.velocity[:2].tolist(),
                    detection_name=name,
                    detection_score=box.score,
                    attribute_name=attr)
                annos.append(nusc_anno)
zhangwenwei's avatar
zhangwenwei committed
233
            nusc_annos[sample_token] = annos
zhangwenwei's avatar
zhangwenwei committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        nusc_submissions = {
            'meta': self.modality,
            'results': nusc_annos,
        }

        mmcv.mkdir_or_exist(jsonfile_prefix)
        res_path = osp.join(jsonfile_prefix, 'results_nusc.json')
        print('Results writes to', res_path)
        mmcv.dump(nusc_submissions, res_path)
        return res_path

    def _evaluate_single(self,
                         result_path,
                         logger=None,
                         metric='bbox',
                         result_name='pts_bbox'):
        from nuscenes import NuScenes
        from nuscenes.eval.detection.evaluate import NuScenesEval

        output_dir = osp.join(*osp.split(result_path)[:-1])
        nusc = NuScenes(
            version=self.version, dataroot=self.data_root, verbose=False)
        eval_set_map = {
            'v1.0-mini': 'mini_train',
            'v1.0-trainval': 'val',
        }
        nusc_eval = NuScenesEval(
            nusc,
            config=self.eval_detection_configs,
            result_path=result_path,
            eval_set=eval_set_map[self.version],
            output_dir=output_dir,
            verbose=False)
        nusc_eval.main(render_curves=False)

        # record metrics
        metrics = mmcv.load(osp.join(output_dir, 'metrics_summary.json'))
        detail = dict()
        metric_prefix = '{}_NuScenes'.format(result_name)
zhangwenwei's avatar
zhangwenwei committed
273
        for name in self.CLASSES:
zhangwenwei's avatar
zhangwenwei committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
            for k, v in metrics['label_aps'][name].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}_AP_dist_{}'.format(metric_prefix, name, k)] = val
            for k, v in metrics['label_tp_errors'][name].items():
                val = float('{:.4f}'.format(v))
                detail['{}/{}_{}'.format(metric_prefix, name, k)] = val

        detail['{}/NDS'.format(metric_prefix)] = metrics['nd_score']
        detail['{}/mAP'.format(metric_prefix)] = metrics['mean_ap']
        return detail

    def format_results(self, results, jsonfile_prefix=None):
        """Format the results to json (standard format for COCO evaluation).

        Args:
            results (list): Testing results of the dataset.
            jsonfile_prefix (str | None): The prefix of json files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
            tuple: (result_files, tmp_dir), result_files is a dict containing
                the json filepaths, tmp_dir is the temporal directory created
                for saving json files when jsonfile_prefix is not specified.
        """
        assert isinstance(results, list), 'results must be a list'
        assert len(results) == len(self), (
            'The length of results is not equal to the dataset len: {} != {}'.
            format(len(results), len(self)))

        if jsonfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            jsonfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None

        if not isinstance(results[0], dict):
            result_files = self._format_bbox(results, jsonfile_prefix)
        else:
            result_files = dict()
            for name in results[0]:
zhangwenwei's avatar
zhangwenwei committed
315
                print(f'\nFormating bboxes of {name}')
zhangwenwei's avatar
zhangwenwei committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
                results_ = [out[name] for out in results]
                tmp_file_ = osp.join(jsonfile_prefix, name)
                result_files.update(
                    {name: self._format_bbox(results_, tmp_file_)})
        return result_files, tmp_dir

    def evaluate(self,
                 results,
                 metric='bbox',
                 logger=None,
                 jsonfile_prefix=None,
                 result_names=['pts_bbox']):
        """Evaluation in nuScenes protocol.

        Args:
            results (list): Testing results of the dataset.
            metric (str | list[str]): Metrics to be evaluated.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            jsonfile_prefix (str | None): The prefix of json files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.

        Returns:
            dict[str: float]
        """
        result_files, tmp_dir = self.format_results(results, jsonfile_prefix)

        if isinstance(result_files, dict):
            results_dict = dict()
            for name in result_names:
                print('Evaluating bboxes of {}'.format(name))
                ret_dict = self._evaluate_single(result_files[name])
            results_dict.update(ret_dict)
        elif isinstance(result_files, str):
            results_dict = self._evaluate_single(result_files)

        if tmp_dir is not None:
            tmp_dir.cleanup()
        return results_dict


def output_to_nusc_box(detection):
359
    box3d = detection['boxes_3d']
zhangwenwei's avatar
zhangwenwei committed
360
361
    scores = detection['scores_3d'].numpy()
    labels = detection['labels_3d'].numpy()
362
363
364
365

    box_gravity_center = box3d.gravity_center.numpy()
    box_dims = box3d.dims.numpy()
    box_yaw = box3d.yaw.numpy()
zhangwenwei's avatar
zhangwenwei committed
366
367
    # TODO: check whether this is necessary
    # with dir_offset & dir_limit in the head
368
369
    box_yaw = -box_yaw - np.pi / 2

zhangwenwei's avatar
zhangwenwei committed
370
    box_list = []
371
372
373
    for i in range(len(box3d)):
        quat = pyquaternion.Quaternion(axis=[0, 0, 1], radians=box_yaw[i])
        velocity = (*box3d.tensor[i, 7:9], 0.0)
zhangwenwei's avatar
zhangwenwei committed
374
375
376
377
378
        # velo_val = np.linalg.norm(box3d[i, 7:9])
        # velo_ori = box3d[i, 6]
        # velocity = (
        # velo_val * np.cos(velo_ori), velo_val * np.sin(velo_ori), 0.0)
        box = NuScenesBox(
379
380
            box_gravity_center[i],
            box_dims[i],
zhangwenwei's avatar
zhangwenwei committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
            quat,
            label=labels[i],
            score=scores[i],
            velocity=velocity)
        box_list.append(box)
    return box_list


def lidar_nusc_box_to_global(info,
                             boxes,
                             classes,
                             eval_configs,
                             eval_version='detection_cvpr_2019'):
    box_list = []
    for box in boxes:
        # Move box to ego vehicle coord system
        box.rotate(pyquaternion.Quaternion(info['lidar2ego_rotation']))
        box.translate(np.array(info['lidar2ego_translation']))
        # filter det in ego.
        cls_range_map = eval_configs.class_range
        radius = np.linalg.norm(box.center[:2], 2)
        det_range = cls_range_map[classes[box.label]]
        if radius > det_range:
            continue
        # Move box to global coord system
        box.rotate(pyquaternion.Quaternion(info['ego2global_rotation']))
        box.translate(np.array(info['ego2global_translation']))
        box_list.append(box)
    return box_list