votenet.py 2.96 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright (c) OpenMMLab. All rights reserved.
from torch.nn.modules.conv import Conv1d

from mmdet3d.models.backbones.pointnet2_sa_ssg import PointNet2SASSG
from mmdet3d.models.data_preprocessors.data_preprocessor import \
    Det3DDataPreprocessor
from mmdet3d.models.dense_heads.vote_head import VoteHead
from mmdet3d.models.detectors.votenet import VoteNet
from mmdet3d.models.losses.chamfer_distance import ChamferDistance

model = dict(
    type=VoteNet,
    data_preprocessor=dict(type=Det3DDataPreprocessor),
    backbone=dict(
        type=PointNet2SASSG,
        in_channels=4,
        num_points=(2048, 1024, 512, 256),
        radius=(0.2, 0.4, 0.8, 1.2),
        num_samples=(64, 32, 16, 16),
        sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256),
                     (128, 128, 256)),
        fp_channels=((256, 256), (256, 256)),
        norm_cfg=dict(type='BN2d'),
        sa_cfg=dict(
            type='PointSAModule',
            pool_mod='max',
            use_xyz=True,
            normalize_xyz=True)),
    bbox_head=dict(
        type=VoteHead,
        vote_module_cfg=dict(
            in_channels=256,
            vote_per_seed=1,
            gt_per_seed=3,
            conv_channels=(256, 256),
            conv_cfg=dict(type=Conv1d),
            norm_cfg=dict(type='BN1d'),
            norm_feats=True,
            vote_loss=dict(
                type=ChamferDistance,
                mode='l1',
                reduction='none',
                loss_dst_weight=10.0)),
        vote_aggregation_cfg=dict(
            type='PointSAModule',
            num_point=256,
            radius=0.3,
            num_sample=16,
            mlp_channels=[256, 128, 128, 128],
            use_xyz=True,
            normalize_xyz=True),
        pred_layer_cfg=dict(
            in_channels=128, shared_conv_channels=(128, 128), bias=True),
        objectness_loss=dict(
            type='mmdet.CrossEntropyLoss',
            class_weight=[0.2, 0.8],
            reduction='sum',
            loss_weight=5.0),
        center_loss=dict(
            type=ChamferDistance,
            mode='l2',
            reduction='sum',
            loss_src_weight=10.0,
            loss_dst_weight=10.0),
        dir_class_loss=dict(
            type='mmdet.CrossEntropyLoss', reduction='sum', loss_weight=1.0),
        dir_res_loss=dict(
            type='mmdet.SmoothL1Loss', reduction='sum', loss_weight=10.0),
        size_class_loss=dict(
            type='mmdet.CrossEntropyLoss', reduction='sum', loss_weight=1.0),
        size_res_loss=dict(
            type='mmdet.SmoothL1Loss', reduction='sum',
            loss_weight=10.0 / 3.0),
        semantic_loss=dict(
            type='mmdet.CrossEntropyLoss', reduction='sum', loss_weight=1.0)),
    # model training and testing settings
    train_cfg=dict(
        pos_distance_thr=0.3, neg_distance_thr=0.6, sample_mode='vote'),
    test_cfg=dict(
        sample_mode='seed',
        nms_thr=0.25,
        score_thr=0.05,
        per_class_proposal=True))