semantickitti.py 8.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright (c) OpenMMLab. All rights reserved.
from mmcv.transforms.processing import TestTimeAug
from mmengine.dataset.sampler import DefaultSampler
from mmengine.visualization.vis_backend import LocalVisBackend

from mmdet3d.datasets.semantickitti_dataset import SemanticKittiDataset
from mmdet3d.datasets.transforms.formating import Pack3DDetInputs
from mmdet3d.datasets.transforms.loading import (LoadAnnotations3D,
                                                 LoadPointsFromFile,
                                                 PointSegClassMapping)
from mmdet3d.datasets.transforms.transforms_3d import (GlobalRotScaleTrans,
                                                       RandomFlip3D)
from mmdet3d.evaluation.metrics.seg_metric import SegMetric
from mmdet3d.models.segmentors.seg3d_tta import Seg3DTTAModel
from mmdet3d.visualization.local_visualizer import Det3DLocalVisualizer

# For SemanticKitti we usually do 19-class segmentation.
# For labels_map we follow the uniform format of MMDetection & MMSegmentation
# i.e. we consider the unlabeled class as the last one, which is different
# from the original implementation of some methods e.g. Cylinder3D.
dataset_type = 'SemanticKittiDataset'
data_root = 'data/semantickitti/'
class_names = [
    'car', 'bicycle', 'motorcycle', 'truck', 'bus', 'person', 'bicyclist',
    'motorcyclist', 'road', 'parking', 'sidewalk', 'other-ground', 'building',
    'fence', 'vegetation', 'trunck', 'terrian', 'pole', 'traffic-sign'
]
labels_map = {
    0: 19,  # "unlabeled"
    1: 19,  # "outlier" mapped to "unlabeled" --------------mapped
    10: 0,  # "car"
    11: 1,  # "bicycle"
    13: 4,  # "bus" mapped to "other-vehicle" --------------mapped
    15: 2,  # "motorcycle"
    16: 4,  # "on-rails" mapped to "other-vehicle" ---------mapped
    18: 3,  # "truck"
    20: 4,  # "other-vehicle"
    30: 5,  # "person"
    31: 6,  # "bicyclist"
    32: 7,  # "motorcyclist"
    40: 8,  # "road"
    44: 9,  # "parking"
    48: 10,  # "sidewalk"
    49: 11,  # "other-ground"
    50: 12,  # "building"
    51: 13,  # "fence"
    52: 19,  # "other-structure" mapped to "unlabeled" ------mapped
    60: 8,  # "lane-marking" to "road" ---------------------mapped
    70: 14,  # "vegetation"
    71: 15,  # "trunk"
    72: 16,  # "terrain"
    80: 17,  # "pole"
    81: 18,  # "traffic-sign"
    99: 19,  # "other-object" to "unlabeled" ----------------mapped
    252: 0,  # "moving-car" to "car" ------------------------mapped
    253: 6,  # "moving-bicyclist" to "bicyclist" ------------mapped
    254: 5,  # "moving-person" to "person" ------------------mapped
    255: 7,  # "moving-motorcyclist" to "motorcyclist" ------mapped
    256: 4,  # "moving-on-rails" mapped to "other-vehic------mapped
    257: 4,  # "moving-bus" mapped to "other-vehicle" -------mapped
    258: 3,  # "moving-truck" to "truck" --------------------mapped
    259: 4  # "moving-other"-vehicle to "other-vehicle"-----mapped
}

metainfo = dict(
    classes=class_names, seg_label_mapping=labels_map, max_label=259)

input_modality = dict(use_lidar=True, use_camera=False)

# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection3d/semantickitti/'

# Method 2: Use backend_args, file_client_args in versions before 1.1.0
# backend_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         './data/': 's3://openmmlab/datasets/detection3d/',
#          'data/': 's3://openmmlab/datasets/detection3d/'
#      }))
backend_args = None

train_pipeline = [
    dict(
        type=LoadPointsFromFile,
        coord_type='LIDAR',
        load_dim=4,
        use_dim=4,
        backend_args=backend_args),
    dict(
        type=LoadAnnotations3D,
        with_bbox_3d=False,
        with_label_3d=False,
        with_seg_3d=True,
        seg_3d_dtype='np.int32',
        seg_offset=2**16,
        dataset_type='semantickitti',
        backend_args=backend_args),
    dict(type=PointSegClassMapping),
    dict(
        type=RandomFlip3D,
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
        flip_ratio_bev_vertical=0.5),
    dict(
        type=GlobalRotScaleTrans,
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0.1, 0.1, 0.1],
    ),
    dict(type=Pack3DDetInputs, keys=['points', 'pts_semantic_mask'])
]
test_pipeline = [
    dict(
        type=LoadPointsFromFile,
        coord_type='LIDAR',
        load_dim=4,
        use_dim=4,
        backend_args=backend_args),
    dict(
        type=LoadAnnotations3D,
        with_bbox_3d=False,
        with_label_3d=False,
        with_seg_3d=True,
        seg_3d_dtype='np.int32',
        seg_offset=2**16,
        dataset_type='semantickitti',
        backend_args=backend_args),
    dict(type=PointSegClassMapping),
    dict(type=Pack3DDetInputs, keys=['points'])
]
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
    dict(
        type=LoadPointsFromFile,
        coord_type='LIDAR',
        load_dim=4,
        use_dim=4,
        backend_args=backend_args),
    dict(type=Pack3DDetInputs, keys=['points'])
]
tta_pipeline = [
    dict(
        type=LoadPointsFromFile,
        coord_type='LIDAR',
        load_dim=4,
        use_dim=4,
        backend_args=backend_args),
    dict(
        type=LoadAnnotations3D,
        with_bbox_3d=False,
        with_label_3d=False,
        with_seg_3d=True,
        seg_3d_dtype='np.int32',
        seg_offset=2**16,
        dataset_type='semantickitti',
        backend_args=backend_args),
    dict(type=PointSegClassMapping),
    dict(
        type=TestTimeAug,
        transforms=[[
            dict(
                type=RandomFlip3D,
                sync_2d=False,
                flip_ratio_bev_horizontal=0.,
                flip_ratio_bev_vertical=0.),
            dict(
                type=RandomFlip3D,
                sync_2d=False,
                flip_ratio_bev_horizontal=0.,
                flip_ratio_bev_vertical=1.),
            dict(
                type=RandomFlip3D,
                sync_2d=False,
                flip_ratio_bev_horizontal=1.,
                flip_ratio_bev_vertical=0.),
            dict(
                type=RandomFlip3D,
                sync_2d=False,
                flip_ratio_bev_horizontal=1.,
                flip_ratio_bev_vertical=1.)
        ],
                    [
                        dict(
                            type=GlobalRotScaleTrans,
                            rot_range=[pcd_rotate_range, pcd_rotate_range],
                            scale_ratio_range=[
                                pcd_scale_factor, pcd_scale_factor
                            ],
                            translation_std=[0, 0, 0])
                        for pcd_rotate_range in [-0.78539816, 0.0, 0.78539816]
                        for pcd_scale_factor in [0.95, 1.0, 1.05]
                    ], [dict(type=Pack3DDetInputs, keys=['points'])]])
]

train_dataloader = dict(
    batch_size=2,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type=DefaultSampler, shuffle=True),
    dataset=dict(
        type=SemanticKittiDataset,
        data_root=data_root,
        ann_file='semantickitti_infos_train.pkl',
        pipeline=train_pipeline,
        metainfo=metainfo,
        modality=input_modality,
        ignore_index=19,
        backend_args=backend_args))

test_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type=DefaultSampler, shuffle=False),
    dataset=dict(
        type=SemanticKittiDataset,
        data_root=data_root,
        ann_file='semantickitti_infos_val.pkl',
        pipeline=test_pipeline,
        metainfo=metainfo,
        modality=input_modality,
        ignore_index=19,
        test_mode=True,
        backend_args=backend_args))

val_dataloader = test_dataloader

val_evaluator = dict(type=SegMetric)
test_evaluator = val_evaluator

vis_backends = [dict(type=LocalVisBackend)]
visualizer = dict(
    type=Det3DLocalVisualizer, vis_backends=vis_backends, name='visualizer')

tta_model = dict(type=Seg3DTTAModel)