nus_3d.py 6.34 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.dataset.sampler import DefaultSampler
from mmengine.visualization.vis_backend import LocalVisBackend

from mmdet3d.datasets.nuscenes_dataset import NuScenesDataset
from mmdet3d.datasets.transforms.formating import Pack3DDetInputs
from mmdet3d.datasets.transforms.loading import (LoadAnnotations3D,
                                                 LoadPointsFromFile,
                                                 LoadPointsFromMultiSweeps)
from mmdet3d.datasets.transforms.test_time_aug import MultiScaleFlipAug3D
from mmdet3d.datasets.transforms.transforms_3d import (  # noqa
    GlobalRotScaleTrans, ObjectNameFilter, ObjectRangeFilter, PointShuffle,
    PointsRangeFilter, RandomFlip3D)
from mmdet3d.evaluation.metrics.nuscenes_metric import NuScenesMetric
from mmdet3d.visualization.local_visualizer import Det3DLocalVisualizer

# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-50, -50, -5, 50, 50, 3]
# Using calibration info convert the Lidar-coordinate point cloud range to the
# ego-coordinate point cloud range could bring a little promotion in nuScenes.
# point_cloud_range = [-50, -50.8, -5, 50, 49.2, 3]
# For nuScenes we usually do 10-class detection
class_names = [
    'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
    'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
metainfo = dict(classes=class_names)
dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/'
# Input modality for nuScenes dataset, this is consistent with the submission
# format which requires the information in input_modality.
input_modality = dict(use_lidar=True, use_camera=False)
data_prefix = dict(pts='samples/LIDAR_TOP', img='', sweeps='sweeps/LIDAR_TOP')

# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection3d/nuscenes/'

# Method 2: Use backend_args, file_client_args in versions before 1.1.0
# backend_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         './data/': 's3://openmmlab/datasets/detection3d/',
#          'data/': 's3://openmmlab/datasets/detection3d/'
#      }))
backend_args = None

train_pipeline = [
    dict(
        type=LoadPointsFromFile,
        coord_type='LIDAR',
        load_dim=5,
        use_dim=5,
        backend_args=backend_args),
    dict(
        type=LoadPointsFromMultiSweeps,
        sweeps_num=10,
        backend_args=backend_args),
    dict(type=LoadAnnotations3D, with_bbox_3d=True, with_label_3d=True),
    dict(
        type=GlobalRotScaleTrans,
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0, 0, 0]),
    dict(type=RandomFlip3D, flip_ratio_bev_horizontal=0.5),
    dict(type=PointsRangeFilter, point_cloud_range=point_cloud_range),
    dict(type=ObjectRangeFilter, point_cloud_range=point_cloud_range),
    dict(type=ObjectNameFilter, classes=class_names),
    dict(type=PointShuffle),
    dict(
        type=Pack3DDetInputs, keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
    dict(
        type=LoadPointsFromFile,
        coord_type='LIDAR',
        load_dim=5,
        use_dim=5,
        backend_args=backend_args),
    dict(
        type=LoadPointsFromMultiSweeps,
        sweeps_num=10,
        test_mode=True,
        backend_args=backend_args),
    dict(
        type=MultiScaleFlipAug3D,
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type=GlobalRotScaleTrans,
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type=RandomFlip3D),
            dict(type=PointsRangeFilter, point_cloud_range=point_cloud_range)
        ]),
    dict(type=Pack3DDetInputs, keys=['points'])
]
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
    dict(
        type=LoadPointsFromFile,
        coord_type='LIDAR',
        load_dim=5,
        use_dim=5,
        backend_args=backend_args),
    dict(
        type=LoadPointsFromMultiSweeps,
        sweeps_num=10,
        test_mode=True,
        backend_args=backend_args),
    dict(type=Pack3DDetInputs, keys=['points'])
]
train_dataloader = dict(
    batch_size=4,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type=DefaultSampler, shuffle=True),
    dataset=dict(
        type=NuScenesDataset,
        data_root=data_root,
        ann_file='nuscenes_infos_train.pkl',
        pipeline=train_pipeline,
        metainfo=metainfo,
        modality=input_modality,
        test_mode=False,
        data_prefix=data_prefix,
        # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
        # and box_type_3d='Depth' in sunrgbd and scannet dataset.
        box_type_3d='LiDAR',
        backend_args=backend_args))
test_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type=DefaultSampler, shuffle=False),
    dataset=dict(
        type=NuScenesDataset,
        data_root=data_root,
        ann_file='nuscenes_infos_val.pkl',
        pipeline=test_pipeline,
        metainfo=metainfo,
        modality=input_modality,
        data_prefix=data_prefix,
        test_mode=True,
        box_type_3d='LiDAR',
        backend_args=backend_args))
val_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type=DefaultSampler, shuffle=False),
    dataset=dict(
        type=NuScenesDataset,
        data_root=data_root,
        ann_file='nuscenes_infos_val.pkl',
        pipeline=test_pipeline,
        metainfo=metainfo,
        modality=input_modality,
        test_mode=True,
        data_prefix=data_prefix,
        box_type_3d='LiDAR',
        backend_args=backend_args))

val_evaluator = dict(
    type=NuScenesMetric,
    data_root=data_root,
    ann_file=data_root + 'nuscenes_infos_val.pkl',
    metric='bbox',
    backend_args=backend_args)
test_evaluator = val_evaluator

vis_backends = [dict(type=LocalVisBackend)]
visualizer = dict(
    type=Det3DLocalVisualizer, vis_backends=vis_backends, name='visualizer')