point_sa_module.py 8.25 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
2
import torch
from mmcv.cnn import ConvModule
zhangwenwei's avatar
zhangwenwei committed
3
4
5
from torch import nn as nn
from torch.nn import functional as F
from typing import List
wuyuefeng's avatar
wuyuefeng committed
6

7
from mmdet3d.ops import GroupAll, Points_Sampler, QueryAndGroup, gather_points
wuyuefeng's avatar
wuyuefeng committed
8
9
10


class PointSAModuleMSG(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
11
12
    """Point set abstraction module with multi-scale grouping used in
    Pointnets.
wuyuefeng's avatar
wuyuefeng committed
13
14
15
16
17
18
19

    Args:
        num_point (int): Number of points.
        radii (list[float]): List of radius in each ball query.
        sample_nums (list[int]): Number of samples in each ball query.
        mlp_channels (list[int]): Specify of the pointnet before
            the global pooling for each scale.
20
21
22
23
24
25
26
        fps_mod (list[str]: Type of FPS method, valid mod
            ['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS'].
            F-FPS: using feature distances for FPS.
            D-FPS: using Euclidean distances of points for FPS.
            FS: using F-FPS and D-FPS simultaneously.
        fps_sample_range_list (list[int]): Range of points to apply FPS.
            Default: [-1].
wuyuefeng's avatar
wuyuefeng committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
        norm_cfg (dict): Type of normalization method.
            Default: dict(type='BN2d').
        use_xyz (bool): Whether to use xyz.
            Default: True.
        pool_mod (str): Type of pooling method.
            Default: 'max_pool'.
        normalize_xyz (bool): Whether to normalize local XYZ with radius.
            Default: False.
    """

    def __init__(self,
                 num_point: int,
                 radii: List[float],
                 sample_nums: List[int],
                 mlp_channels: List[List[int]],
42
43
                 fps_mod: List[str] = ['D-FPS'],
                 fps_sample_range_list: List[int] = [-1],
wuyuefeng's avatar
wuyuefeng committed
44
45
46
                 norm_cfg: dict = dict(type='BN2d'),
                 use_xyz: bool = True,
                 pool_mod='max',
47
48
                 normalize_xyz: bool = False,
                 bias='auto'):
wuyuefeng's avatar
wuyuefeng committed
49
50
51
52
        super().__init__()

        assert len(radii) == len(sample_nums) == len(mlp_channels)
        assert pool_mod in ['max', 'avg']
53
54
55
56
57
58
59
60
61
62
63
64
65
66
        assert isinstance(fps_mod, list) or isinstance(fps_mod, tuple)
        assert isinstance(fps_sample_range_list, list) or isinstance(
            fps_sample_range_list, tuple)
        assert len(fps_mod) == len(fps_sample_range_list)

        if isinstance(mlp_channels, tuple):
            mlp_channels = list(map(list, mlp_channels))

        if isinstance(num_point, int):
            self.num_point = [num_point]
        elif isinstance(num_point, list) or isinstance(num_point, tuple):
            self.num_point = num_point
        else:
            raise NotImplementedError('Error type of num_point!')
wuyuefeng's avatar
wuyuefeng committed
67
68
69
70

        self.pool_mod = pool_mod
        self.groupers = nn.ModuleList()
        self.mlps = nn.ModuleList()
71
72
73
74
75
        self.fps_mod_list = fps_mod
        self.fps_sample_range_list = fps_sample_range_list

        self.points_sampler = Points_Sampler(self.num_point, self.fps_mod_list,
                                             self.fps_sample_range_list)
wuyuefeng's avatar
wuyuefeng committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

        for i in range(len(radii)):
            radius = radii[i]
            sample_num = sample_nums[i]
            if num_point is not None:
                grouper = QueryAndGroup(
                    radius,
                    sample_num,
                    use_xyz=use_xyz,
                    normalize_xyz=normalize_xyz)
            else:
                grouper = GroupAll(use_xyz)
            self.groupers.append(grouper)

            mlp_spec = mlp_channels[i]
            if use_xyz:
                mlp_spec[0] += 3

            mlp = nn.Sequential()
            for i in range(len(mlp_spec) - 1):
                mlp.add_module(
                    f'layer{i}',
                    ConvModule(
                        mlp_spec[i],
                        mlp_spec[i + 1],
                        kernel_size=(1, 1),
                        stride=(1, 1),
                        conv_cfg=dict(type='Conv2d'),
104
105
                        norm_cfg=norm_cfg,
                        bias=bias))
wuyuefeng's avatar
wuyuefeng committed
106
107
108
109
110
111
            self.mlps.append(mlp)

    def forward(
        self,
        points_xyz: torch.Tensor,
        features: torch.Tensor = None,
112
113
114
        indices: torch.Tensor = None,
        target_xyz: torch.Tensor = None,
    ) -> (torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor):
wuyuefeng's avatar
wuyuefeng committed
115
116
117
118
119
120
121
122
        """forward.

        Args:
            points_xyz (Tensor): (B, N, 3) xyz coordinates of the features.
            features (Tensor): (B, C, N) features of each point.
                Default: None.
            indices (Tensor): (B, num_point) Index of the features.
                Default: None.
123
            target_xyz (Tensor): (B, M, 3) new_xyz coordinates of the outputs.
wuyuefeng's avatar
wuyuefeng committed
124
125
126
127
128
129
130
131
132
133
134
135

        Returns:
            Tensor: (B, M, 3) where M is the number of points.
                New features xyz.
            Tensor: (B, M, sum_k(mlps[k][-1])) where M is the number
                of points. New feature descriptors.
            Tensor: (B, M) where M is the number of points.
                Index of the features.
        """
        new_features_list = []
        xyz_flipped = points_xyz.transpose(1, 2).contiguous()

136
137
138
139
140
141
142
143
144
145
        if indices is not None:
            assert (indices.shape[1] == self.num_point[0])
            new_xyz = gather_points(xyz_flipped, indices).transpose(
                1, 2).contiguous() if self.num_point is not None else None
        elif target_xyz is not None:
            new_xyz = target_xyz.contiguous()
        else:
            indices = self.points_sampler(points_xyz, features)
            new_xyz = gather_points(xyz_flipped, indices).transpose(
                1, 2).contiguous() if self.num_point is not None else None
wuyuefeng's avatar
wuyuefeng committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

        for i in range(len(self.groupers)):
            # (B, C, num_point, nsample)
            new_features = self.groupers[i](points_xyz, new_xyz, features)

            # (B, mlp[-1], num_point, nsample)
            new_features = self.mlps[i](new_features)
            if self.pool_mod == 'max':
                # (B, mlp[-1], num_point, 1)
                new_features = F.max_pool2d(
                    new_features, kernel_size=[1, new_features.size(3)])
            elif self.pool_mod == 'avg':
                # (B, mlp[-1], num_point, 1)
                new_features = F.avg_pool2d(
                    new_features, kernel_size=[1, new_features.size(3)])
            else:
                raise NotImplementedError

            new_features = new_features.squeeze(-1)  # (B, mlp[-1], num_point)
            new_features_list.append(new_features)

        return new_xyz, torch.cat(new_features_list, dim=1), indices


class PointSAModule(PointSAModuleMSG):
    """Point set abstraction module used in Pointnets.

    Args:
        mlp_channels (list[int]): Specify of the pointnet before
            the global pooling for each scale.
        num_point (int): Number of points.
            Default: None.
        radius (float): Radius to group with.
            Default: None.
        num_sample (int): Number of samples in each ball query.
            Default: None.
        norm_cfg (dict): Type of normalization method.
            Default: dict(type='BN2d').
        use_xyz (bool): Whether to use xyz.
            Default: True.
        pool_mod (str): Type of pooling method.
            Default: 'max_pool'.
188
189
190
191
        fps_mod (list[str]: Type of FPS method, valid mod
            ['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS'].
        fps_sample_range_list (list[int]): Range of points to apply FPS.
            Default: [-1].
wuyuefeng's avatar
wuyuefeng committed
192
193
194
195
196
197
198
199
200
201
202
203
        normalize_xyz (bool): Whether to normalize local XYZ with radius.
            Default: False.
    """

    def __init__(self,
                 mlp_channels: List[int],
                 num_point: int = None,
                 radius: float = None,
                 num_sample: int = None,
                 norm_cfg: dict = dict(type='BN2d'),
                 use_xyz: bool = True,
                 pool_mod: str = 'max',
204
205
                 fps_mod: List[str] = ['D-FPS'],
                 fps_sample_range_list: List[int] = [-1],
wuyuefeng's avatar
wuyuefeng committed
206
207
208
209
210
211
212
213
214
                 normalize_xyz: bool = False):
        super().__init__(
            mlp_channels=[mlp_channels],
            num_point=num_point,
            radii=[radius],
            sample_nums=[num_sample],
            norm_cfg=norm_cfg,
            use_xyz=use_xyz,
            pool_mod=pool_mod,
215
216
            fps_mod=fps_mod,
            fps_sample_range_list=fps_sample_range_list,
wuyuefeng's avatar
wuyuefeng committed
217
            normalize_xyz=normalize_xyz)