local_visualizer.py 26.2 KB
Newer Older
ZCMax's avatar
ZCMax committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from os import path as osp
from typing import Dict, List, Optional, Tuple, Union

import mmcv
import numpy as np
from mmengine.dist import master_only
from torch import Tensor

try:
    import open3d as o3d
    from open3d import geometry
except ImportError:
    raise ImportError(
        'Please run "pip install open3d" to install open3d first.')

from mmengine.data import InstanceData
from mmengine.visualization.utils import check_type, tensor2ndarray

from mmdet3d.core import (BaseInstance3DBoxes, DepthInstance3DBoxes,
                          Det3DDataSample, PixelData)
from mmdet3d.registry import VISUALIZERS
from mmdet.core.visualization import DetLocalVisualizer
from .vis_utils import (proj_camera_bbox3d_to_img, proj_depth_bbox3d_to_img,
                        proj_lidar_bbox3d_to_img, to_depth_mode, write_obj,
                        write_oriented_bbox)


@VISUALIZERS.register_module()
class Det3DLocalVisualizer(DetLocalVisualizer):
    """MMDetection3D Local Visualizer.

    - 3D detection and segmentation drawing methods

      - draw_bboxes_3d: draw 3D bounding boxes on point clouds
      - draw_proj_bboxes_3d: draw projected 3D bounding boxes on image

    Args:
        name (str): Name of the instance. Defaults to 'visualizer'.
        image (np.ndarray, optional): the origin image to draw. The format
            should be RGB. Defaults to None.
        vis_backends (list, optional): Visual backend config list.
            Defaults to None.
        save_dir (str, optional): Save file dir for all storage backends.
            If it is None, the backend storage will not save any data.
        bbox_color (str, tuple(int), optional): Color of bbox lines.
            The tuple of color should be in BGR order. Defaults to None.
        text_color (str, tuple(int), optional): Color of texts.
            The tuple of color should be in BGR order.
            Defaults to (200, 200, 200).
        mask_color (str, tuple(int), optional): Color of masks.
            The tuple of color should be in BGR order.
            Defaults to None.
        line_width (int, float): The linewidth of lines.
            Defaults to 3.
        alpha (int, float): The transparency of bboxes or mask.
                Defaults to 0.8.

    Examples:
        >>> import numpy as np
        >>> import torch
        >>> from mmengine.data import InstanceData
        >>> from mmdet3d.core import Det3DDataSample
        >>> from mmdet3d.core import Det3DLocalVisualizer

        >>> det3d_local_visualizer = Det3DLocalVisualizer()
        >>> image = np.random.randint(0, 256,
        ...                     size=(10, 12, 3)).astype('uint8')
        >>> gt_instances_3d = InstanceData()
        >>> gt_instances_3d.bboxes_3d = BaseInstance3DBoxes(torch.rand((5, 7)))
        >>> gt_instances_3d.labels_3d = torch.randint(0, 2, (1,))
        >>> gt_det3d_data_sample = Det3DDataSample()
        >>> gt_det3d_data_sample.gt_instances_3d = gt_instances_3d
        >>> det3d_local_visualizer.add_datasample('image', image,
        ...                         gt_det_data_sample)
        >>> det3d_local_visualizer.add_datasample(
        ...                       'image', image, gt_det_data_sample,
        ...                        out_file='out_file.jpg')
        >>> det3d_local_visualizer.add_datasample(
        ...                        'image', image, gt_det_data_sample,
        ...                         show=True)
        >>> pred_instances = InstanceData()
        >>> pred_instances.bboxes_3d = torch.Tensor([[2, 4, 4, 8]])
        >>> pred_instances.labels_3d = torch.randint(0, 2, (1,))
        >>> pred_det_data_sample = Det3DDataSample()
        >>> pred_det_data_sample.pred_instances = pred_instances
        >>> det_local_visualizer.add_datasample('image', image,
        ...                         gt_det_data_sample,
        ...                         pred_det_data_sample)
    """

    def __init__(self,
                 name: str = 'visualizer',
                 image: Optional[np.ndarray] = None,
                 vis_backends: Optional[Dict] = None,
                 save_dir: Optional[str] = None,
                 bbox_color: Optional[Union[str, Tuple[int]]] = None,
                 text_color: Optional[Union[str,
                                            Tuple[int]]] = (200, 200, 200),
                 mask_color: Optional[Union[str, Tuple[int]]] = None,
                 line_width: Union[int, float] = 3,
                 vis_cfg: Optional[Dict] = None,
                 alpha: float = 0.8):
        super().__init__(
            name=name,
            image=image,
            vis_backends=vis_backends,
            save_dir=save_dir,
            bbox_color=bbox_color,
            text_color=text_color,
            mask_color=mask_color,
            line_width=line_width,
            alpha=alpha)
        self.o3d_vis = self._initialize_o3d_vis(vis_cfg)

    def _initialize_o3d_vis(self, vis_cfg) -> tuple:
        """Build open3d vis according to vis_cfg.

        Args:
            vis_cfg (dict): The config to build open3d vis.

        Returns:
             tuple: build open3d vis.
        """
        # init open3d visualizer
        o3d_vis = o3d.visualization.Visualizer()
        o3d_vis.create_window()
        # create coordinate frame
        mesh_frame = geometry.TriangleMesh.create_coordinate_frame(vis_cfg)
        o3d_vis.add_geometry(mesh_frame)

        return o3d_vis

    @master_only
    def set_points(self,
                   points: np.ndarray,
                   vis_task: str,
                   points_color: Tuple = (0.5, 0.5, 0.5),
                   points_size: int = 2,
                   mode: str = 'xyz') -> None:
        """Set the points to draw.

        Args:
            points (numpy.array, shape=[N, 3+C]):
                points to visualize.
            vis_task (str): Visualiztion task, it includes:
                'det', 'multi_modality-det', 'mono-det', 'seg'.
            point_color (tuple[float], optional): the color of points.
                Default: (0.5, 0.5, 0.5).
            points_size (int, optional): the size of points to show
                on visualizer. Default: 2.
            mode (str, optional):  indicate type of the input points,
                available mode ['xyz', 'xyzrgb']. Default: 'xyz'.
        """
        assert points is not None
        check_type('points', points, np.ndarray)

        if self.pcd and vis_task != 'seg':
            self.o3d_vis.remove_geometry(self.pcd)

        # set points size in Open3D
        self.o3d_vis.get_render_option().point_size = points_size

        points = points.copy()
        pcd = geometry.PointCloud()
        if mode == 'xyz':
            pcd.points = o3d.utility.Vector3dVector(points[:, :3])
            points_colors = np.tile(
                np.array(points_color), (points.shape[0], 1))
        elif mode == 'xyzrgb':
            pcd.points = o3d.utility.Vector3dVector(points[:, :3])
            points_colors = points[:, 3:6]
            # normalize to [0, 1] for Open3D drawing
            if not ((points_colors >= 0.0) & (points_colors <= 1.0)).all():
                points_colors /= 255.0
        else:
            raise NotImplementedError

        pcd.colors = o3d.utility.Vector3dVector(points_colors)
        self.o3d_vis.add_geometry(pcd)
        self.pcd = pcd
        self.points_color = points_color

    # TODO: assign 3D Box color according to pred / GT labels
    # We draw GT / pred bboxes on the same point cloud scenes
    # for better detection performance comparison
    def draw_bboxes_3d(self,
                       bboxes_3d: DepthInstance3DBoxes,
                       bbox_color=(0, 1, 0),
                       points_in_box_color=(1, 0, 0),
                       rot_axis=2,
                       center_mode='lidar_bottom',
                       mode='xyz'):
        """Draw bbox on visualizer and change the color of points inside
        bbox3d.

        Args:
            bboxes_3d (:obj:`DepthInstance3DBoxes`, shape=[M, 7]):
                3d bbox (x, y, z, x_size, y_size, z_size, yaw) to visualize.
            bbox_color (tuple[float], optional): the color of 3D bboxes.
                Default: (0, 1, 0).
            points_in_box_color (tuple[float], optional):
                the color of points inside 3D bboxes. Default: (1, 0, 0).
            rot_axis (int, optional): rotation axis of 3D bboxes.
                Default: 2.
            center_mode (bool, optional): Indicates the center of bbox is
                bottom center or gravity center. available mode
                ['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'.
            mode (str, optional):  Indicates type of input points,
                available mode ['xyz', 'xyzrgb']. Default: 'xyz'.
        """
        # Before visualizing the 3D Boxes in point cloud scene
        # we need to convert the boxes to Depth mode
        check_type('bboxes', bboxes_3d, (DepthInstance3DBoxes))

        # convert bboxes to numpy dtype
        bboxes_3d = tensor2ndarray(bboxes_3d.tensor)

        in_box_color = np.array(points_in_box_color)

        for i in range(len(bboxes_3d)):
            center = bboxes_3d[i, 0:3]
            dim = bboxes_3d[i, 3:6]
            yaw = np.zeros(3)
            yaw[rot_axis] = bboxes_3d[i, 6]
            rot_mat = geometry.get_rotation_matrix_from_xyz(yaw)

            if center_mode == 'lidar_bottom':
                # bottom center to gravity center
                center[rot_axis] += dim[rot_axis] / 2
            elif center_mode == 'camera_bottom':
                # bottom center to gravity center
                center[rot_axis] -= dim[rot_axis] / 2
            box3d = geometry.OrientedBoundingBox(center, rot_mat, dim)

            line_set = geometry.LineSet.create_from_oriented_bounding_box(
                box3d)
            line_set.paint_uniform_color(bbox_color)
            # draw bboxes on visualizer
            self.o3d_vis.add_geometry(line_set)

            # change the color of points which are in box
            if self.pcd is not None and mode == 'xyz':
                indices = box3d.get_point_indices_within_bounding_box(
                    self.pcd.points)
                self.points_colors[indices] = in_box_color

        # update points colors
        if self.pcd is not None:
            self.pcd.colors = o3d.utility.Vector3dVector(self.points_colors)
            self.o3d_vis.update_geometry(self.pcd)

    def draw_proj_bboxes_3d(self,
                            bboxes_3d: BaseInstance3DBoxes,
                            input_meta: dict,
                            bbox_color: Tuple[float],
                            line_styles: Union[str, List[str]] = '-',
                            line_widths: Union[Union[int, float],
                                               List[Union[int, float]]] = 2,
                            box_mode: str = 'lidar'):
        """Draw projected 3D boxes on the image.

        Args:
            bbox3d (:obj:`BaseInstance3DBoxes`, shape=[M, 7]):
                3d bbox (x, y, z, x_size, y_size, z_size, yaw) to visualize.
            input_meta (dict): Input meta information.
            bbox_color (tuple[float], optional): the color of bbox.
                Default: (0, 1, 0).
            line_styles (Union[str, List[str]]): The linestyle
                of lines. ``line_styles`` can have the same length with
                texts or just single value. If ``line_styles`` is single
                value, all the lines will have the same linestyle.
            line_widths (Union[Union[int, float], List[Union[int, float]]]):
                The linewidth of lines. ``line_widths`` can have
                the same length with lines or just single value.
                If ``line_widths`` is single value, all the lines will
                have the same linewidth. Defaults to 2.
            box_mode (str): Indicate the coordinates of bbox.
        """

        check_type('bboxes', bboxes_3d, BaseInstance3DBoxes)

        if box_mode == 'depth':
            proj_bbox3d_to_img = proj_depth_bbox3d_to_img
        elif box_mode == 'lidar':
            proj_bbox3d_to_img = proj_lidar_bbox3d_to_img
        elif box_mode == 'camera':
            proj_bbox3d_to_img = proj_camera_bbox3d_to_img
        else:
            raise NotImplementedError(f'unsupported box mode {box_mode}')

        # (num_bboxes_3d, 8, 2)
        proj_bboxes_3d = proj_bbox3d_to_img(bboxes_3d, input_meta)
        num_bboxes_3d = proj_bboxes_3d.shape[0]

        line_indices = ((0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (3, 2), (3, 7),
                        (4, 5), (4, 7), (2, 6), (5, 6), (6, 7))

        # TODO: assign each projected 3d bboxes color
        # according to pred / gt class.
        for i in range(num_bboxes_3d):
            x_datas = []
            y_datas = []
            corners = proj_bboxes_3d[i].astype(np.int)  # (8, 2)
            for start, end in line_indices:
                x_datas.append([corners[start][0], corners[end][0]])
                y_datas.append([corners[start][1], corners[end][1]])
            x_datas = np.array(x_datas)
            y_datas = np.array(y_datas)
            self.draw_lines(x_datas, y_datas, bbox_color, line_styles,
                            line_widths)

    def draw_seg_mask(self, seg_mask_colors: np.array, vis_task: str):
        """Add segmentation mask to visualizer via per-point colorization.

        Args:
            seg_mask_colors (numpy.array, shape=[N, 6]):
                The segmentation mask whose first 3 dims are point coordinates
                and last 3 dims are converted colors.
        """
        # we can't draw the colors on existing points
        # in case gt and pred mask would overlap
        # instead we set a large offset along x-axis for each seg mask
        self.seg_num += 1
        offset = (np.array(self.pcd.points).max(0) -
                  np.array(self.pcd.points).min(0))[0] * 1.2 * self.seg_num
        mesh_frame = geometry.TriangleMesh.create_coordinate_frame(
            size=1, origin=[offset, 0, 0])  # create coordinate frame for seg
        self.o3d_vis.add_geometry(mesh_frame)
        seg_points = copy.deepcopy(seg_mask_colors)
        seg_points[:, 0] += offset
        self.set_points(seg_points, vis_task, self.points_size, mode='xyzrgb')

    def _draw_instances_3d(self, data_input: dict, instances: InstanceData,
                           input_meta: dict, vis_task: str,
                           palette: Optional[List[tuple]]):
        """Draw 3D instances of GT or prediction.

        Args:
            data_input (dict): The input dict to draw.
            instances (:obj:`InstanceData`): Data structure for
                instance-level annotations or predictions.
            metainfo (dict): Meta information.
            vis_task (str): Visualiztion task, it includes:
                'det', 'multi_modality-det', 'mono-det'.

        Returns:
            np.ndarray: the drawn image which channel is RGB.
        """

        bboxes_3d = instances.bboxes_3d  # BaseInstance3DBoxes

        drawn_img = None
        drawn_points = None
        drawn_bboxes_3d = None

        if vis_task in ['det', 'multi_modality-det']:
            assert 'points' in data_input
            points = data_input['points']
            check_type('points', points, (np.ndarray, Tensor))
            points = tensor2ndarray(points)

            if not isinstance(bboxes_3d, DepthInstance3DBoxes):
                points, bboxes_3d_depth = to_depth_mode(points, bboxes_3d)
            else:
                bboxes_3d_depth = bboxes_3d.clone()

            self.set_points(points, vis_task)
            self.draw_bboxes_3d(bboxes_3d_depth)

            drawn_bboxes_3d = tensor2ndarray(bboxes_3d_depth.tensor)
            drawn_points = points

        if vis_task in ['mono-det', 'multi_modality-det']:
            assert 'img' in data_input
            image = data_input['img']
            self.set_image(image)
            self.draw_proj_bboxes_3d(bboxes_3d, input_meta)
            drawn_img = self.get_image()

        data_3d = dict(
            points=drawn_points, img=drawn_img, bboxes_3d=drawn_bboxes_3d)
        return data_3d

    def _draw_pts_sem_seg(self,
                          points: Tensor,
                          pts_seg: PixelData,
                          vis_task: str,
                          palette: Optional[List[tuple]] = None,
                          ignore_index: Optional[int] = None):

        check_type('points', points, (np.ndarray, Tensor))

        points = tensor2ndarray(points)
        pts_sem_seg = tensor2ndarray(pts_seg.pts_semantic_mask)

        if ignore_index is not None:
            points = points[pts_sem_seg != ignore_index]
            pts_sem_seg = pts_sem_seg[pts_sem_seg != ignore_index]

        pts_color = palette[pts_sem_seg]
        seg_color = np.concatenate([points[:, :3], pts_color], axis=1)

        self.set_points(points, vis_task)
        self.draw_seg_mask(seg_color, vis_task)

        seg_data_3d = dict(points=points, seg_color=seg_color)
        return seg_data_3d

    @master_only
    def show(self,
             vis_task: str = None,
             out_file: str = None,
             drawn_img_3d: Optional[np.ndarray] = None,
             drawn_img: Optional[np.ndarray] = None,
             win_name: str = 'image',
             wait_time: int = 0,
             continue_key=' ') -> None:
        """Show the drawn image.

        Args:
            vis_task (str): Visualiztion task, it includes:
                'det', 'multi_modality-det', 'mono-det'.
            out_file (str): Output file path.
            drawn_img (np.ndarray, optional): The image to show. If drawn_img
                is None, it will show the image got by Visualizer. Defaults
                to None.
            win_name (str):  The image title. Defaults to 'image'.
            wait_time (int): Delay in milliseconds. 0 is the special
                value that means "forever". Defaults to 0.
            continue_key (str): The key for users to continue. Defaults to
                the space key.
        """
        if vis_task in ['det', 'multi_modality-det']:
            self.o3d_vis.run()
            if out_file is not None:
                self.o3d_vis.capture_screen_image(out_file)
            self.o3d_vis.destroy_window()

        if vis_task in ['mono-det', 'multi_modality-det']:
            super().show(drawn_img_3d, win_name, wait_time, continue_key)

        if drawn_img is not None:
            super().show(drawn_img, win_name, wait_time, continue_key)

    @master_only
    def add_datasample(self,
                       name: str,
                       data_input: dict,
                       gt_sample: Optional['Det3DDataSample'] = None,
                       pred_sample: Optional['Det3DDataSample'] = None,
                       draw_gt: bool = True,
                       draw_pred: bool = True,
                       show: bool = False,
                       wait_time: float = 0,
                       out_file: Optional[str] = None,
                       vis_task: str = 'mono-det',
                       pred_score_thr: float = 0.3,
                       step: int = 0) -> None:
        """Draw datasample and save to all backends.

        - If GT and prediction are plotted at the same time, they are
        displayed in a stitched image where the left image is the
        ground truth and the right image is the prediction.
        - If ``show`` is True, all storage backends are ignored, and
        the images will be displayed in a local window.
        - If ``out_file`` is specified, the drawn point cloud or
        image will be saved to ``out_file``. t is usually used when
        the display is not available.

        Args:
            name (str): The image identifier.
            data_input (dict): It should include the point clouds or image
                to draw.
            gt_sample (:obj:`Det3DDataSample`, optional): GT Det3DDataSample.
                Defaults to None.
            pred_sample (:obj:`Det3DDataSample`, optional): Prediction
                Det3DDataSample. Defaults to None.
            draw_gt (bool): Whether to draw GT Det3DDataSample.
                Default to True.
            draw_pred (bool): Whether to draw Prediction Det3DDataSample.
                Defaults to True.
            show (bool): Whether to display the drawn point clouds and
                image. Default to False.
            wait_time (float): The interval of show (s). Defaults to 0.
            out_file (str): Path to output file. Defaults to None.
            vis-task (str): Visualization task. Defaults to 'mono-det'.
            pred_score_thr (float): The threshold to visualize the bboxes
                and masks. Defaults to 0.3.
            step (int): Global step value to record. Defaults to 0.
        """
        classes = self.dataset_meta.get('CLASSES', None)
        # For object detection datasets, no PALETTE is saved
        palette = self.dataset_meta.get('PALETTE', None)
        ignore_index = self.dataset_meta.get('ignore_index', None)

        if draw_gt and gt_sample is not None:
            if 'gt_instances_3d' in gt_sample:
                gt_data_3d = self._draw_instances_3d(data_input,
                                                     gt_sample.gt_instances_3d,
                                                     gt_sample.metainfo,
                                                     vis_task, palette)
            if 'gt_instances' in gt_sample:
                assert 'img' in data_input
                gt_img_data = self._draw_instances(data_input['img'],
                                                   gt_sample.gt_instances,
                                                   classes, palette)
            if 'gt_pts_sem_seg' in gt_sample:
                assert classes is not None, 'class information is ' \
                                            'not provided when ' \
                                            'visualizing panoptic ' \
                                            'segmentation results.'
                assert 'points' in data_input
                gt_seg_data_3d = \
                    self._draw_pts_sem_seg(data_input['points'],
                                           gt_sample.gt_pts_seg,
                                           classes, vis_task, palette,
                                           out_file, ignore_index)

        if draw_pred and pred_sample is not None:
            if 'pred_instances_3d' in pred_sample:
                pred_instances_3d = pred_sample.pred_instances_3d
                pred_instances_3d = pred_instances_3d[
                    pred_instances_3d.scores_3d > pred_score_thr].cpu()
                pred_data_3d = self._draw_instances_3d(data_input,
                                                       pred_instances_3d,
                                                       pred_sample.metainfo,
                                                       vis_task, palette)
            if 'pred_instances' in pred_sample:
                assert 'img' in data_input
                pred_instances = pred_sample.pred_instances
                pred_instances = pred_instances_3d[
                    pred_instances.scores > pred_score_thr].cpu()
                pred_img_data = self._draw_instances(data_input['img'],
                                                     pred_instances, classes,
                                                     palette)
            if 'pred_pts_sem_seg' in pred_sample:
                assert classes is not None, 'class information is ' \
                                            'not provided when ' \
                                            'visualizing panoptic ' \
                                            'segmentation results.'
                assert 'points' in data_input
                pred_seg_data_3d = \
                    self._draw_pts_sem_seg(data_input['points'],
                                           pred_sample.pred_pts_seg,
                                           classes, palette, out_file,
                                           ignore_index)

        # monocular 3d object detection image
        if gt_data_3d is not None and pred_data_3d is not None:
            drawn_img_3d = np.concatenate(
                (gt_data_3d['img'], pred_data_3d['img']), axis=1)
        elif gt_data_3d is not None:
            drawn_img_3d = gt_data_3d['img']
        elif pred_data_3d is not None:
            drawn_img_3d = pred_data_3d['img']
        else:
            drawn_img_3d = None

        # 2d object detection image
        if gt_img_data is not None and pred_img_data is not None:
            drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1)
        elif gt_img_data is not None:
            drawn_img = gt_img_data
        elif pred_img_data is not None:
            drawn_img = pred_img_data
        else:
            drawn_img = None

        if show:
            self.show(
                vis_task,
                out_file,
                drawn_img_3d,
                drawn_img,
                win_name=name,
                wait_time=wait_time)

        if out_file is not None:
            if drawn_img_3d is not None:
                mmcv.imwrite(drawn_img_3d[..., ::-1], out_file)
            if drawn_img is not None:
                mmcv.imwrite(drawn_img[..., ::-1], out_file)
            if gt_data_3d is not None:
                write_obj(gt_data_3d['points'],
                          osp.join(out_file, 'points.obj'))
                write_oriented_bbox(gt_data_3d['bboxes_3d'],
                                    osp.join(out_file, 'gt_bbox.obj'))
            if pred_data_3d is not None:
                write_obj(pred_data_3d['points'],
                          osp.join(out_file, 'points.obj'))
                write_oriented_bbox(pred_data_3d['bboxes_3d'],
                                    osp.join(out_file, 'pred_bbox.obj'))
            if gt_seg_data_3d is not None:
                write_obj(gt_seg_data_3d['points'],
                          osp.join(out_file, 'points.obj'))
                write_obj(gt_seg_data_3d['seg_color'],
                          osp.join(out_file, 'gt_seg.obj'))
            if pred_seg_data_3d is not None:
                write_obj(pred_seg_data_3d['points'],
                          osp.join(out_file, 'points.obj'))
                write_obj(pred_seg_data_3d['seg_color'],
                          osp.join(out_file, 'pred_seg.obj'))
        else:
            self.add_image(name, drawn_img_3d, step)