test_waymo_dataset.py 10.6 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
Ziyi Wu's avatar
Ziyi Wu committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import numpy as np
import pytest
import tempfile
import torch

from mmdet3d.datasets import WaymoDataset


def _generate_waymo_train_dataset_config():
    data_root = 'tests/data/waymo/kitti_format/'
    ann_file = 'tests/data/waymo/kitti_format/waymo_infos_train.pkl'
    classes = ['Car', 'Pedestrian', 'Cyclist']
    pts_prefix = 'velodyne'
    point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4]
    file_client_args = dict(backend='disk')
    db_sampler = dict(
        data_root=data_root,
        info_path=data_root + 'waymo_dbinfos_train.pkl',
        rate=1.0,
        prepare=dict(
            filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)),
        classes=classes,
        sample_groups=dict(Car=15),
        points_loader=dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=5,
            use_dim=[0, 1, 2, 3, 4],
            file_client_args=file_client_args))
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=6,
            use_dim=5,
            file_client_args=file_client_args),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=True,
            with_label_3d=True,
            file_client_args=file_client_args),
        dict(type='ObjectSample', db_sampler=db_sampler),
        dict(
            type='RandomFlip3D',
            sync_2d=False,
            flip_ratio_bev_horizontal=0.5,
            flip_ratio_bev_vertical=0.5),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.78539816, 0.78539816],
            scale_ratio_range=[0.95, 1.05]),
        dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
        dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
        dict(type='PointShuffle'),
        dict(type='DefaultFormatBundle3D', class_names=classes),
        dict(
            type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
    ]
    modality = dict(use_lidar=True, use_camera=False)
    split = 'training'
    return data_root, ann_file, classes, pts_prefix, pipeline, modality, split


def _generate_waymo_val_dataset_config():
    data_root = 'tests/data/waymo/kitti_format/'
    ann_file = 'tests/data/waymo/kitti_format/waymo_infos_val.pkl'
    classes = ['Car', 'Pedestrian', 'Cyclist']
    pts_prefix = 'velodyne'
    point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4]
    file_client_args = dict(backend='disk')
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=6,
            use_dim=5,
            file_client_args=file_client_args),
        dict(
            type='MultiScaleFlipAug3D',
            img_scale=(1333, 800),
            pts_scale_ratio=1,
            flip=False,
            transforms=[
                dict(
                    type='GlobalRotScaleTrans',
                    rot_range=[0, 0],
                    scale_ratio_range=[1., 1.],
                    translation_std=[0, 0, 0]),
                dict(type='RandomFlip3D'),
                dict(
                    type='PointsRangeFilter',
                    point_cloud_range=point_cloud_range),
                dict(
                    type='DefaultFormatBundle3D',
                    class_names=classes,
                    with_label=False),
                dict(type='Collect3D', keys=['points'])
            ])
    ]
    modality = dict(use_lidar=True, use_camera=False)
    split = 'training'
    return data_root, ann_file, classes, pts_prefix, pipeline, modality, split


def test_getitem():
    np.random.seed(0)
    data_root, ann_file, classes, pts_prefix, pipeline, \
        modality, split = _generate_waymo_train_dataset_config()
    waymo_dataset = WaymoDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
    data = waymo_dataset[0]
    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
    gt_labels_3d = data['gt_labels_3d']._data
    expected_gt_bboxes_3d = torch.tensor(
        [[31.4750, -4.5690, 2.1857, 2.3519, 6.0931, 3.1756, -1.2895]])
    expected_gt_labels_3d = torch.tensor([0])
    assert points.shape == (765, 5)
    assert torch.allclose(
        gt_bboxes_3d.tensor, expected_gt_bboxes_3d, atol=1e-4)
    assert torch.all(gt_labels_3d == expected_gt_labels_3d)


def test_evaluate():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    from mmdet3d.core.bbox import LiDARInstance3DBoxes
    data_root, ann_file, classes, pts_prefix, pipeline, \
        modality, split = _generate_waymo_val_dataset_config()
    waymo_dataset = WaymoDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor([[
            6.9684e+01, 3.3335e+01, 4.1465e-02, 2.0100e+00, 4.3600e+00,
            1.4600e+00, -9.0000e-02
        ]]))
    labels_3d = torch.tensor([0])
    scores_3d = torch.tensor([0.5])
    result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)

    # kitti protocol
    metric = ['kitti']
    ap_dict = waymo_dataset.evaluate([result], metric=metric)
    assert np.isclose(ap_dict['KITTI/Overall_3D_easy'], 3.0303030303030307)
    assert np.isclose(ap_dict['KITTI/Overall_3D_moderate'], 3.0303030303030307)
    assert np.isclose(ap_dict['KITTI/Overall_3D_hard'], 3.0303030303030307)

    # waymo protocol
    metric = ['waymo']
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor([[
            6.9684e+01, 3.3335e+01, 4.1465e-02, 2.0100e+00, 4.3600e+00,
            1.4600e+00, -9.0000e-02
        ]]))
    labels_3d = torch.tensor([0])
    scores_3d = torch.tensor([0.8])
    result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
    ap_dict = waymo_dataset.evaluate([result], metric=metric)
    assert np.isclose(ap_dict['Overall/L1 mAP'], 0.3333333333333333)
    assert np.isclose(ap_dict['Overall/L2 mAP'], 0.3333333333333333)
    assert np.isclose(ap_dict['Overall/L1 mAPH'], 0.3333333333333333)
    assert np.isclose(ap_dict['Overall/L2 mAPH'], 0.3333333333333333)


def test_show():
    import mmcv
    from os import path as osp

    from mmdet3d.core.bbox import LiDARInstance3DBoxes

    # Waymo shares show function with KITTI so I just copy it here
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    data_root, ann_file, classes, pts_prefix, pipeline, \
        modality, split = _generate_waymo_val_dataset_config()
    waymo_dataset = WaymoDataset(
        data_root, ann_file, split=split, modality=modality, pipeline=pipeline)
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor(
            [[46.1218, -4.6496, -0.9275, 0.5316, 1.4442, 1.7450, 1.1749],
             [33.3189, 0.1981, 0.3136, 0.5656, 1.2301, 1.7985, 1.5723],
             [46.1366, -4.6404, -0.9510, 0.5162, 1.6501, 1.7540, 1.3778],
             [33.2646, 0.2297, 0.3446, 0.5746, 1.3365, 1.7947, 1.5430],
             [58.9079, 16.6272, -1.5829, 1.5656, 3.9313, 1.4899, 1.5505]]))
    scores_3d = torch.tensor([0.1815, 0.1663, 0.5792, 0.2194, 0.2780])
    labels_3d = torch.tensor([0, 0, 1, 1, 2])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
    waymo_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, '1000000', '1000000_points.obj')
    gt_file_path = osp.join(temp_dir, '1000000', '1000000_gt.obj')
    pred_file_path = osp.join(temp_dir, '1000000', '1000000_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()

    # test show with pipeline
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='LIDAR',
            load_dim=6,
            use_dim=5),
        dict(
            type='DefaultFormatBundle3D',
            class_names=classes,
            with_label=False),
        dict(type='Collect3D', keys=['points'])
    ]
    waymo_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, '1000000', '1000000_points.obj')
    gt_file_path = osp.join(temp_dir, '1000000', '1000000_gt.obj')
    pred_file_path = osp.join(temp_dir, '1000000', '1000000_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()


def test_format_results():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    from mmdet3d.core.bbox import LiDARInstance3DBoxes
    data_root, ann_file, classes, pts_prefix, pipeline, \
        modality, split = _generate_waymo_val_dataset_config()
    waymo_dataset = WaymoDataset(data_root, ann_file, split, pts_prefix,
                                 pipeline, classes, modality)
    boxes_3d = LiDARInstance3DBoxes(
        torch.tensor([[
            6.9684e+01, 3.3335e+01, 4.1465e-02, 2.0100e+00, 4.3600e+00,
            1.4600e+00, -9.0000e-02
        ]]))
    labels_3d = torch.tensor([0])
    scores_3d = torch.tensor([0.5])
    result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
    result_files, tmp_dir = waymo_dataset.format_results([result],
                                                         data_format='waymo')
    expected_name = np.array(['Car'])
    expected_truncated = np.array([0.])
    expected_occluded = np.array([0])
    expected_alpha = np.array([0.35619745])
    expected_bbox = np.array([[0., 673.59814, 37.07779, 719.7537]])
    expected_dimensions = np.array([[4.36, 1.46, 2.01]])
    expected_location = np.array([[-33.000042, 2.4999967, 68.29972]])
    expected_rotation_y = np.array([-0.09])
    expected_score = np.array([0.5])
    expected_sample_idx = np.array([1000000])
    assert np.all(result_files[0]['name'] == expected_name)
    assert np.allclose(result_files[0]['truncated'], expected_truncated)
    assert np.all(result_files[0]['occluded'] == expected_occluded)
    assert np.allclose(result_files[0]['alpha'], expected_alpha)
    assert np.allclose(result_files[0]['bbox'], expected_bbox)
    assert np.allclose(result_files[0]['dimensions'], expected_dimensions)
    assert np.allclose(result_files[0]['location'], expected_location)
    assert np.allclose(result_files[0]['rotation_y'], expected_rotation_y)
    assert np.allclose(result_files[0]['score'], expected_score)
    assert np.allclose(result_files[0]['sample_idx'], expected_sample_idx)
    tmp_dir.cleanup()