train_mixins.py 16.3 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
3
4
import numpy as np
import torch

zhangwenwei's avatar
zhangwenwei committed
5
from mmdet3d.core import limit_period
zhangwenwei's avatar
zhangwenwei committed
6
from mmdet.core import images_to_levels, multi_apply
zhangwenwei's avatar
zhangwenwei committed
7
8
9


class AnchorTrainMixin(object):
10
    """Mixin class for target assigning of dense heads."""
zhangwenwei's avatar
zhangwenwei committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24

    def anchor_target_3d(self,
                         anchor_list,
                         gt_bboxes_list,
                         input_metas,
                         gt_bboxes_ignore_list=None,
                         gt_labels_list=None,
                         label_channels=1,
                         num_classes=1,
                         sampling=True):
        """Compute regression and classification targets for anchors.

        Args:
            anchor_list (list[list]): Multi level anchors of each image.
zhangwenwei's avatar
zhangwenwei committed
25
            gt_bboxes_list (list[:obj:`BaseInstance3DBoxes`]): Ground truth
wuyuefeng's avatar
wuyuefeng committed
26
                bboxes of each image.
wuyuefeng's avatar
wuyuefeng committed
27
28
            input_metas (list[dict]): Meta info of each image.
            gt_bboxes_ignore_list (None | list): Ignore list of gt bboxes.
liyinhao's avatar
liyinhao committed
29
            gt_labels_list (list[torch.Tensor]): Gt labels of batches.
wuyuefeng's avatar
wuyuefeng committed
30
31
32
            label_channels (int): The channel of labels.
            num_classes (int): The number of classes.
            sampling (bool): Whether to sample anchors.
zhangwenwei's avatar
zhangwenwei committed
33
34

        Returns:
35
36
37
38
39
            tuple (list, list, list, list, list, list, int, int):
                Anchor targets, including labels, label weights,
                bbox targets, bbox weights, direction targets,
                direction weights, number of postive anchors and
                number of negative anchors.
zhangwenwei's avatar
zhangwenwei committed
40
41
42
43
        """
        num_imgs = len(input_metas)
        assert len(anchor_list) == num_imgs

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        if isinstance(anchor_list[0][0], list):
            # sizes of anchors are different
            # anchor number of a single level
            num_level_anchors = [
                sum([anchor.size(0) for anchor in anchors])
                for anchors in anchor_list[0]
            ]
            for i in range(num_imgs):
                anchor_list[i] = anchor_list[i][0]
        else:
            # anchor number of multi levels
            num_level_anchors = [
                anchors.view(-1, self.box_code_size).size(0)
                for anchors in anchor_list[0]
            ]
            # concat all level anchors and flags to a single tensor
            for i in range(num_imgs):
                anchor_list[i] = torch.cat(anchor_list[i])
zhangwenwei's avatar
zhangwenwei committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

        # compute targets for each image
        if gt_bboxes_ignore_list is None:
            gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
        if gt_labels_list is None:
            gt_labels_list = [None for _ in range(num_imgs)]

        (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights,
         all_dir_targets, all_dir_weights, pos_inds_list,
         neg_inds_list) = multi_apply(
             self.anchor_target_3d_single,
             anchor_list,
             gt_bboxes_list,
             gt_bboxes_ignore_list,
             gt_labels_list,
             input_metas,
             label_channels=label_channels,
             num_classes=num_classes,
             sampling=sampling)

        # no valid anchors
        if any([labels is None for labels in all_labels]):
            return None
        # sampled anchors of all images
        num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
        num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
        # split targets to a list w.r.t. multiple levels
        labels_list = images_to_levels(all_labels, num_level_anchors)
        label_weights_list = images_to_levels(all_label_weights,
                                              num_level_anchors)
        bbox_targets_list = images_to_levels(all_bbox_targets,
                                             num_level_anchors)
        bbox_weights_list = images_to_levels(all_bbox_weights,
                                             num_level_anchors)
        dir_targets_list = images_to_levels(all_dir_targets, num_level_anchors)
        dir_weights_list = images_to_levels(all_dir_weights, num_level_anchors)
        return (labels_list, label_weights_list, bbox_targets_list,
                bbox_weights_list, dir_targets_list, dir_weights_list,
                num_total_pos, num_total_neg)

    def anchor_target_3d_single(self,
                                anchors,
                                gt_bboxes,
                                gt_bboxes_ignore,
                                gt_labels,
                                input_meta,
                                label_channels=1,
                                num_classes=1,
                                sampling=True):
wuyuefeng's avatar
wuyuefeng committed
111
112
113
        """Compute targets of anchors in single batch.

        Args:
liyinhao's avatar
liyinhao committed
114
            anchors (torch.Tensor): Concatenated multi-level anchor.
zhangwenwei's avatar
zhangwenwei committed
115
            gt_bboxes (:obj:`BaseInstance3DBoxes`): Gt bboxes.
liyinhao's avatar
liyinhao committed
116
117
            gt_bboxes_ignore (torch.Tensor): Ignored gt bboxes.
            gt_labels (torch.Tensor): Gt class labels.
wuyuefeng's avatar
wuyuefeng committed
118
119
120
121
122
123
            input_meta (dict): Meta info of each image.
            label_channels (int): The channel of labels.
            num_classes (int): The number of classes.
            sampling (bool): Whether to sample anchors.

        Returns:
124
            tuple[torch.Tensor]: Anchor targets.
wuyuefeng's avatar
wuyuefeng committed
125
        """
126
127
        if isinstance(self.bbox_assigner,
                      list) and (not isinstance(anchors, list)):
zhangwenwei's avatar
zhangwenwei committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
            feat_size = anchors.size(0) * anchors.size(1) * anchors.size(2)
            rot_angles = anchors.size(-2)
            assert len(self.bbox_assigner) == anchors.size(-3)
            (total_labels, total_label_weights, total_bbox_targets,
             total_bbox_weights, total_dir_targets, total_dir_weights,
             total_pos_inds, total_neg_inds) = [], [], [], [], [], [], [], []
            current_anchor_num = 0
            for i, assigner in enumerate(self.bbox_assigner):
                current_anchors = anchors[..., i, :, :].reshape(
                    -1, self.box_code_size)
                current_anchor_num += current_anchors.size(0)
                if self.assign_per_class:
                    gt_per_cls = (gt_labels == i)
                    anchor_targets = self.anchor_target_single_assigner(
                        assigner, current_anchors, gt_bboxes[gt_per_cls, :],
                        gt_bboxes_ignore, gt_labels[gt_per_cls], input_meta,
144
                        num_classes, sampling)
zhangwenwei's avatar
zhangwenwei committed
145
146
147
                else:
                    anchor_targets = self.anchor_target_single_assigner(
                        assigner, current_anchors, gt_bboxes, gt_bboxes_ignore,
148
                        gt_labels, input_meta, num_classes, sampling)
zhangwenwei's avatar
zhangwenwei committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

                (labels, label_weights, bbox_targets, bbox_weights,
                 dir_targets, dir_weights, pos_inds, neg_inds) = anchor_targets
                total_labels.append(labels.reshape(feat_size, 1, rot_angles))
                total_label_weights.append(
                    label_weights.reshape(feat_size, 1, rot_angles))
                total_bbox_targets.append(
                    bbox_targets.reshape(feat_size, 1, rot_angles,
                                         anchors.size(-1)))
                total_bbox_weights.append(
                    bbox_weights.reshape(feat_size, 1, rot_angles,
                                         anchors.size(-1)))
                total_dir_targets.append(
                    dir_targets.reshape(feat_size, 1, rot_angles))
                total_dir_weights.append(
                    dir_weights.reshape(feat_size, 1, rot_angles))
                total_pos_inds.append(pos_inds)
                total_neg_inds.append(neg_inds)

            total_labels = torch.cat(total_labels, dim=-2).reshape(-1)
            total_label_weights = torch.cat(
                total_label_weights, dim=-2).reshape(-1)
            total_bbox_targets = torch.cat(
                total_bbox_targets, dim=-3).reshape(-1, anchors.size(-1))
            total_bbox_weights = torch.cat(
                total_bbox_weights, dim=-3).reshape(-1, anchors.size(-1))
            total_dir_targets = torch.cat(
                total_dir_targets, dim=-2).reshape(-1)
            total_dir_weights = torch.cat(
                total_dir_weights, dim=-2).reshape(-1)
            total_pos_inds = torch.cat(total_pos_inds, dim=0).reshape(-1)
            total_neg_inds = torch.cat(total_neg_inds, dim=0).reshape(-1)
            return (total_labels, total_label_weights, total_bbox_targets,
                    total_bbox_weights, total_dir_targets, total_dir_weights,
                    total_pos_inds, total_neg_inds)
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
        elif isinstance(self.bbox_assigner, list) and isinstance(
                anchors, list):
            # class-aware anchors with different feature map sizes
            assert len(self.bbox_assigner) == len(anchors), \
                'The number of bbox assigners and anchors should be the same.'
            (total_labels, total_label_weights, total_bbox_targets,
             total_bbox_weights, total_dir_targets, total_dir_weights,
             total_pos_inds, total_neg_inds) = [], [], [], [], [], [], [], []
            current_anchor_num = 0
            for i, assigner in enumerate(self.bbox_assigner):
                current_anchors = anchors[i]
                current_anchor_num += current_anchors.size(0)
                if self.assign_per_class:
                    gt_per_cls = (gt_labels == i)
                    anchor_targets = self.anchor_target_single_assigner(
                        assigner, current_anchors, gt_bboxes[gt_per_cls, :],
                        gt_bboxes_ignore, gt_labels[gt_per_cls], input_meta,
                        num_classes, sampling)
                else:
                    anchor_targets = self.anchor_target_single_assigner(
                        assigner, current_anchors, gt_bboxes, gt_bboxes_ignore,
                        gt_labels, input_meta, num_classes, sampling)

                (labels, label_weights, bbox_targets, bbox_weights,
                 dir_targets, dir_weights, pos_inds, neg_inds) = anchor_targets
                total_labels.append(labels)
                total_label_weights.append(label_weights)
                total_bbox_targets.append(
                    bbox_targets.reshape(-1, anchors[i].size(-1)))
                total_bbox_weights.append(
                    bbox_weights.reshape(-1, anchors[i].size(-1)))
                total_dir_targets.append(dir_targets)
                total_dir_weights.append(dir_weights)
                total_pos_inds.append(pos_inds)
                total_neg_inds.append(neg_inds)

            total_labels = torch.cat(total_labels, dim=0)
            total_label_weights = torch.cat(total_label_weights, dim=0)
            total_bbox_targets = torch.cat(total_bbox_targets, dim=0)
            total_bbox_weights = torch.cat(total_bbox_weights, dim=0)
            total_dir_targets = torch.cat(total_dir_targets, dim=0)
            total_dir_weights = torch.cat(total_dir_weights, dim=0)
            total_pos_inds = torch.cat(total_pos_inds, dim=0)
            total_neg_inds = torch.cat(total_neg_inds, dim=0)
            return (total_labels, total_label_weights, total_bbox_targets,
                    total_bbox_weights, total_dir_targets, total_dir_weights,
                    total_pos_inds, total_neg_inds)
zhangwenwei's avatar
zhangwenwei committed
231
        else:
232
233
234
235
236
            return self.anchor_target_single_assigner(self.bbox_assigner,
                                                      anchors, gt_bboxes,
                                                      gt_bboxes_ignore,
                                                      gt_labels, input_meta,
                                                      num_classes, sampling)
zhangwenwei's avatar
zhangwenwei committed
237
238
239
240
241
242
243
244
245
246

    def anchor_target_single_assigner(self,
                                      bbox_assigner,
                                      anchors,
                                      gt_bboxes,
                                      gt_bboxes_ignore,
                                      gt_labels,
                                      input_meta,
                                      num_classes=1,
                                      sampling=True):
wuyuefeng's avatar
wuyuefeng committed
247
248
249
250
        """Assign anchors and encode positive anchors.

        Args:
            bbox_assigner (BaseAssigner): assign positive and negative boxes.
liyinhao's avatar
liyinhao committed
251
            anchors (torch.Tensor): Concatenated multi-level anchor.
zhangwenwei's avatar
zhangwenwei committed
252
            gt_bboxes (:obj:`BaseInstance3DBoxes`): Gt bboxes.
liyinhao's avatar
liyinhao committed
253
254
            gt_bboxes_ignore (torch.Tensor): Ignored gt bboxes.
            gt_labels (torch.Tensor): Gt class labels.
wuyuefeng's avatar
wuyuefeng committed
255
256
257
258
259
            input_meta (dict): Meta info of each image.
            num_classes (int): The number of classes.
            sampling (bool): Whether to sample anchors.

        Returns:
260
            tuple[torch.Tensor]: Anchor targets.
wuyuefeng's avatar
wuyuefeng committed
261
        """
zhangwenwei's avatar
zhangwenwei committed
262
263
264
265
266
267
268
269
270
        anchors = anchors.reshape(-1, anchors.size(-1))
        num_valid_anchors = anchors.shape[0]
        bbox_targets = torch.zeros_like(anchors)
        bbox_weights = torch.zeros_like(anchors)
        dir_targets = anchors.new_zeros((anchors.shape[0]), dtype=torch.long)
        dir_weights = anchors.new_zeros((anchors.shape[0]), dtype=torch.float)
        labels = anchors.new_zeros(num_valid_anchors, dtype=torch.long)
        label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
        if len(gt_bboxes) > 0:
271
272
            if not isinstance(gt_bboxes, torch.Tensor):
                gt_bboxes = gt_bboxes.tensor.to(anchors.device)
zhangwenwei's avatar
zhangwenwei committed
273
274
275
276
277
278
279
280
            assign_result = bbox_assigner.assign(anchors, gt_bboxes,
                                                 gt_bboxes_ignore, gt_labels)
            sampling_result = self.bbox_sampler.sample(assign_result, anchors,
                                                       gt_bboxes)
            pos_inds = sampling_result.pos_inds
            neg_inds = sampling_result.neg_inds
        else:
            pos_inds = torch.nonzero(
Wenhao Wu's avatar
Wenhao Wu committed
281
282
                anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) > 0,
                as_tuple=False).squeeze(-1).unique()
zhangwenwei's avatar
zhangwenwei committed
283
            neg_inds = torch.nonzero(
Wenhao Wu's avatar
Wenhao Wu committed
284
285
                anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) == 0,
                as_tuple=False).squeeze(-1).unique()
zhangwenwei's avatar
zhangwenwei committed
286
287
288
289

        if gt_labels is not None:
            labels += num_classes
        if len(pos_inds) > 0:
290
291
            pos_bbox_targets = self.bbox_coder.encode(
                sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
zhangwenwei's avatar
zhangwenwei committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
            pos_dir_targets = get_direction_target(
                sampling_result.pos_bboxes,
                pos_bbox_targets,
                self.dir_offset,
                one_hot=False)
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0
            dir_targets[pos_inds] = pos_dir_targets
            dir_weights[pos_inds] = 1.0

            if gt_labels is None:
                labels[pos_inds] = 1
            else:
                labels[pos_inds] = gt_labels[
                    sampling_result.pos_assigned_gt_inds]
            if self.train_cfg.pos_weight <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg.pos_weight

        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0
        return (labels, label_weights, bbox_targets, bbox_weights, dir_targets,
                dir_weights, pos_inds, neg_inds)


def get_direction_target(anchors,
                         reg_targets,
                         dir_offset=0,
                         num_bins=2,
                         one_hot=True):
wuyuefeng's avatar
wuyuefeng committed
323
324
325
    """Encode direction to 0 ~ num_bins-1.

    Args:
liyinhao's avatar
liyinhao committed
326
327
        anchors (torch.Tensor): Concatenated multi-level anchor.
        reg_targets (torch.Tensor): Bbox regression targets.
wuyuefeng's avatar
wuyuefeng committed
328
329
330
331
332
        dir_offset (int): Direction offset.
        num_bins (int): Number of bins to divide 2*PI.
        one_hot (bool): Whether to encode as one hot.

    Returns:
liyinhao's avatar
liyinhao committed
333
        torch.Tensor: Encoded direction targets.
wuyuefeng's avatar
wuyuefeng committed
334
    """
zhangwenwei's avatar
zhangwenwei committed
335
    rot_gt = reg_targets[..., 6] + anchors[..., 6]
zhangwenwei's avatar
zhangwenwei committed
336
    offset_rot = limit_period(rot_gt - dir_offset, 0, 2 * np.pi)
zhangwenwei's avatar
zhangwenwei committed
337
338
339
340
341
342
343
344
345
346
347
    dir_cls_targets = torch.floor(offset_rot / (2 * np.pi / num_bins)).long()
    dir_cls_targets = torch.clamp(dir_cls_targets, min=0, max=num_bins - 1)
    if one_hot:
        dir_targets = torch.zeros(
            *list(dir_cls_targets.shape),
            num_bins,
            dtype=anchors.dtype,
            device=dir_cls_targets.device)
        dir_targets.scatter_(dir_cls_targets.unsqueeze(dim=-1).long(), 1.0)
        dir_cls_targets = dir_targets
    return dir_cls_targets