test_scannet_dataset.py 25.5 KB
Newer Older
1
import copy
yinchimaoliang's avatar
yinchimaoliang committed
2
import numpy as np
Wenwei Zhang's avatar
Wenwei Zhang committed
3
import pytest
yinchimaoliang's avatar
yinchimaoliang committed
4
import torch
yinchimaoliang's avatar
yinchimaoliang committed
5

6
from mmdet3d.datasets import ScanNetDataset, ScanNetSegDataset
yinchimaoliang's avatar
yinchimaoliang committed
7
8
9
10


def test_getitem():
    np.random.seed(0)
liyinhao's avatar
liyinhao committed
11
    root_path = './tests/data/scannet/'
yinchimaoliang's avatar
yinchimaoliang committed
12
13
14
15
16
17
18
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                   'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'garbagebin')
    pipelines = [
        dict(
zhangwenwei's avatar
zhangwenwei committed
19
            type='LoadPointsFromFile',
20
            coord_type='DEPTH',
zhangwenwei's avatar
zhangwenwei committed
21
            shift_height=True,
yinchimaoliang's avatar
yinchimaoliang committed
22
23
            load_dim=6,
            use_dim=[0, 1, 2]),
zhangwenwei's avatar
zhangwenwei committed
24
25
26
27
28
29
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=True,
            with_label_3d=True,
            with_mask_3d=True,
            with_seg_3d=True),
yinchimaoliang's avatar
yinchimaoliang committed
30
31
        dict(type='IndoorPointSample', num_points=5),
        dict(
wuyuefeng's avatar
wuyuefeng committed
32
33
34
35
36
37
38
39
40
            type='RandomFlip3D',
            sync_2d=False,
            flip_ratio_bev_horizontal=1.0,
            flip_ratio_bev_vertical=1.0),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.087266, 0.087266],
            scale_ratio_range=[1.0, 1.0],
            shift_height=True),
yinchimaoliang's avatar
yinchimaoliang committed
41
42
43
44
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(
            type='Collect3D',
            keys=[
zhangwenwei's avatar
zhangwenwei committed
45
                'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask',
yinchimaoliang's avatar
yinchimaoliang committed
46
                'pts_instance_mask'
liyinhao's avatar
liyinhao committed
47
            ],
wuyuefeng's avatar
wuyuefeng committed
48
            meta_keys=['file_name', 'sample_idx', 'pcd_rotation']),
yinchimaoliang's avatar
yinchimaoliang committed
49
50
    ]

51
    scannet_dataset = ScanNetDataset(root_path, ann_file, pipelines)
yinchimaoliang's avatar
yinchimaoliang committed
52
53
54
    data = scannet_dataset[0]
    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
zhangwenwei's avatar
zhangwenwei committed
55
    gt_labels = data['gt_labels_3d']._data
liyinhao's avatar
liyinhao committed
56
57
    pts_semantic_mask = data['pts_semantic_mask']._data
    pts_instance_mask = data['pts_instance_mask']._data
zhangwenwei's avatar
zhangwenwei committed
58
    file_name = data['img_metas']._data['file_name']
wuyuefeng's avatar
wuyuefeng committed
59
    pcd_rotation = data['img_metas']._data['pcd_rotation']
zhangwenwei's avatar
zhangwenwei committed
60
    sample_idx = data['img_metas']._data['sample_idx']
wuyuefeng's avatar
wuyuefeng committed
61
62
63
64
    expected_rotation = np.array([[0.99654, 0.08311407, 0.],
                                  [-0.08311407, 0.99654, 0.], [0., 0., 1.]])
    assert file_name == './tests/data/scannet/points/scene0000_00.bin'
    assert np.allclose(pcd_rotation, expected_rotation, 1e-3)
liyinhao's avatar
liyinhao committed
65
    assert sample_idx == 'scene0000_00'
wuyuefeng's avatar
wuyuefeng committed
66
67
68
69
70
    expected_points = torch.tensor([[-2.7231, -2.2068, 2.3543, 2.3895],
                                    [-0.4065, -3.4857, 2.1330, 2.1682],
                                    [-1.4578, 1.3510, -0.0441, -0.0089],
                                    [2.2428, -1.1323, -0.0288, 0.0064],
                                    [0.7052, -2.9752, 1.5560, 1.5912]])
wuyuefeng's avatar
wuyuefeng committed
71
    expected_gt_bboxes_3d = torch.tensor(
wuyuefeng's avatar
wuyuefeng committed
72
73
74
75
76
        [[-1.1835, -3.6317, 1.5704, 1.7577, 0.3761, 0.5724, 0.0000],
         [-3.1832, 3.2269, 1.1911, 0.6727, 0.2251, 0.6715, 0.0000],
         [-0.9598, -2.2864, 0.0093, 0.7506, 2.5709, 1.2145, 0.0000],
         [-2.6988, -2.7354, 0.8288, 0.7680, 1.8877, 0.2870, 0.0000],
         [3.2989, 0.2885, -0.0090, 0.7600, 3.8814, 2.1603, 0.0000]])
yinchimaoliang's avatar
yinchimaoliang committed
77
78
79
80
81
82
    expected_gt_labels = np.array([
        6, 6, 4, 9, 11, 11, 10, 0, 15, 17, 17, 17, 3, 12, 4, 4, 14, 1, 0, 0, 0,
        0, 0, 0, 5, 5, 5
    ])
    expected_pts_semantic_mask = np.array([3, 1, 2, 2, 15])
    expected_pts_instance_mask = np.array([44, 22, 10, 10, 57])
83
    original_classes = scannet_dataset.CLASSES
yinchimaoliang's avatar
yinchimaoliang committed
84

85
    assert scannet_dataset.CLASSES == class_names
wuyuefeng's avatar
wuyuefeng committed
86
    assert torch.allclose(points, expected_points, 1e-2)
wuyuefeng's avatar
wuyuefeng committed
87
88
    assert gt_bboxes_3d.tensor[:5].shape == (5, 7)
    assert torch.allclose(gt_bboxes_3d.tensor[:5], expected_gt_bboxes_3d, 1e-2)
yinchimaoliang's avatar
yinchimaoliang committed
89
    assert np.all(gt_labels.numpy() == expected_gt_labels)
liyinhao's avatar
liyinhao committed
90
91
    assert np.all(pts_semantic_mask.numpy() == expected_pts_semantic_mask)
    assert np.all(pts_instance_mask.numpy() == expected_pts_instance_mask)
92
93
94
95
96
97
98
99
100
101
102
103
    assert original_classes == class_names

    scannet_dataset = ScanNetDataset(
        root_path, ann_file, pipeline=None, classes=['cabinet', 'bed'])
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'bed']

    scannet_dataset = ScanNetDataset(
        root_path, ann_file, pipeline=None, classes=('cabinet', 'bed'))
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ('cabinet', 'bed')

zhangwenwei's avatar
zhangwenwei committed
104
    # Test load classes from file
105
106
107
108
109
110
111
112
113
    import tempfile
    tmp_file = tempfile.NamedTemporaryFile()
    with open(tmp_file.name, 'w') as f:
        f.write('cabinet\nbed\n')

    scannet_dataset = ScanNetDataset(
        root_path, ann_file, pipeline=None, classes=tmp_file.name)
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'bed']
yinchimaoliang's avatar
yinchimaoliang committed
114
115
116


def test_evaluate():
Wenwei Zhang's avatar
Wenwei Zhang committed
117
118
    if not torch.cuda.is_available():
        pytest.skip()
wuyuefeng's avatar
wuyuefeng committed
119
    from mmdet3d.core.bbox.structures import DepthInstance3DBoxes
yinchimaoliang's avatar
yinchimaoliang committed
120
121
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
122
    scannet_dataset = ScanNetDataset(root_path, ann_file)
yinchimaoliang's avatar
yinchimaoliang committed
123
124
    results = []
    pred_boxes = dict()
wuyuefeng's avatar
wuyuefeng committed
125
126
127
128
    pred_boxes['boxes_3d'] = DepthInstance3DBoxes(
        torch.tensor([[
            1.4813e+00, 3.5207e+00, 1.5704e+00, 1.7445e+00, 2.3196e-01,
            5.7235e-01, 0.0000e+00
liyinhao's avatar
liyinhao committed
129
        ],
wuyuefeng's avatar
wuyuefeng committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
                      [
                          2.9040e+00, -3.4803e+00, 1.1911e+00, 6.6078e-01,
                          1.7072e-01, 6.7154e-01, 0.0000e+00
                      ],
                      [
                          1.1466e+00, 2.1987e+00, 9.2576e-03, 5.4184e-01,
                          2.5346e+00, 1.2145e+00, 0.0000e+00
                      ],
                      [
                          2.9168e+00, 2.5016e+00, 8.2875e-01, 6.1697e-01,
                          1.8428e+00, 2.8697e-01, 0.0000e+00
                      ],
                      [
                          -3.3114e+00, -1.3351e-02, -8.9524e-03, 4.4082e-01,
                          3.8582e+00, 2.1603e+00, 0.0000e+00
                      ],
                      [
                          -2.0135e+00, -3.4857e+00, 9.3848e-01, 1.9911e+00,
                          2.1603e-01, 1.2767e+00, 0.0000e+00
                      ],
                      [
                          -2.1945e+00, -3.1402e+00, -3.8165e-02, 1.4801e+00,
                          6.8676e-01, 1.0586e+00, 0.0000e+00
                      ],
                      [
                          -2.7553e+00, 2.4055e+00, -2.9972e-02, 1.4764e+00,
                          1.4927e+00, 2.3380e+00, 0.0000e+00
                      ]]))
    pred_boxes['labels_3d'] = torch.tensor([6, 6, 4, 9, 11, 11])
    pred_boxes['scores_3d'] = torch.tensor([0.5, 1.0, 1.0, 1.0, 1.0, 0.5])
liyinhao's avatar
liyinhao committed
160
    results.append(pred_boxes)
liyinhao's avatar
liyinhao committed
161
    metric = [0.25, 0.5]
liyinhao's avatar
liyinhao committed
162
    ret_dict = scannet_dataset.evaluate(results, metric)
wuyuefeng's avatar
wuyuefeng committed
163
164
165
166
    assert abs(ret_dict['table_AP_0.25'] - 0.3333) < 0.01
    assert abs(ret_dict['window_AP_0.25'] - 1.0) < 0.01
    assert abs(ret_dict['counter_AP_0.25'] - 1.0) < 0.01
    assert abs(ret_dict['curtain_AP_0.25'] - 1.0) < 0.01
yinchimaoliang's avatar
yinchimaoliang committed
167
168
169
170
171
172
173
174


def test_show():
    import mmcv
    import tempfile
    from os import path as osp

    from mmdet3d.core.bbox import DepthInstance3DBoxes
175
176
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
yinchimaoliang's avatar
yinchimaoliang committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetDataset(root_path, ann_file)
    boxes_3d = DepthInstance3DBoxes(
        torch.tensor([[
            -2.4053e+00, 9.2295e-01, 8.0661e-02, 2.4054e+00, 2.1468e+00,
            8.5990e-01, 0.0000e+00
        ],
                      [
                          -1.9341e+00, -2.0741e+00, 3.0698e-03, 3.2206e-01,
                          2.5322e-01, 3.5144e-01, 0.0000e+00
                      ],
                      [
                          -3.6908e+00, 8.0684e-03, 2.6201e-01, 4.1515e-01,
                          7.6489e-01, 5.3585e-01, 0.0000e+00
                      ],
                      [
                          2.6332e+00, 8.5143e-01, -4.9964e-03, 3.0367e-01,
                          1.3448e+00, 1.8329e+00, 0.0000e+00
                      ],
                      [
                          2.0221e-02, 2.6153e+00, 1.5109e-02, 7.3335e-01,
                          1.0429e+00, 1.0251e+00, 0.0000e+00
                      ]]))
    scores_3d = torch.tensor(
        [1.2058e-04, 2.3012e-03, 6.2324e-06, 6.6139e-06, 6.7965e-05])
    labels_3d = torch.tensor([0, 0, 0, 0, 0])
    result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
    results = [result]
206
    scannet_dataset.show(results, temp_dir, show=False)
yinchimaoliang's avatar
yinchimaoliang committed
207
208
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
209
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
yinchimaoliang's avatar
yinchimaoliang committed
210
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
211
                              'scene0000_00_pred.obj')
yinchimaoliang's avatar
yinchimaoliang committed
212
213
214
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
215
    tmp_dir.cleanup()
216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    # show function with pipeline
    class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                   'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'garbagebin')
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            load_dim=6,
            use_dim=[0, 1, 2]),
        dict(
            type='DefaultFormatBundle3D',
            class_names=class_names,
            with_label=False),
        dict(type='Collect3D', keys=['points'])
    ]
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    scannet_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

def test_seg_getitem():
    np.random.seed(0)
    root_path = './tests/data/scannet/'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
                   'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'otherfurniture')
    palette = [
        [174, 199, 232],
        [152, 223, 138],
        [31, 119, 180],
        [255, 187, 120],
        [188, 189, 34],
        [140, 86, 75],
        [255, 152, 150],
        [214, 39, 40],
        [197, 176, 213],
        [148, 103, 189],
        [196, 156, 148],
        [23, 190, 207],
        [247, 182, 210],
        [219, 219, 141],
        [255, 127, 14],
        [158, 218, 229],
        [44, 160, 44],
        [112, 128, 144],
        [227, 119, 194],
        [82, 84, 163],
    ]
    scene_idxs = [0 for _ in range(20)]
    label_weight = [
        2.389689, 2.7215734, 4.5944676, 4.8543367, 4.096086, 4.907941,
        4.690836, 4.512031, 4.623311, 4.9242644, 5.358117, 5.360071, 5.019636,
        4.967126, 5.3502126, 5.4023647, 5.4027233, 5.4169416, 5.3954206,
        4.6971426
    ]

    # test network inputs are (xyz, rgb, normalized_xyz)
    pipelines = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            use_color=True,
            load_dim=6,
            use_dim=[0, 1, 2, 3, 4, 5]),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=False,
            with_label_3d=False,
            with_mask_3d=False,
            with_seg_3d=True),
        dict(
            type='PointSegClassMapping',
            valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24,
305
306
                           28, 33, 34, 36, 39),
            max_cat_id=40),
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
        dict(
            type='IndoorPatchPointSample',
            num_points=5,
            block_size=1.5,
            sample_rate=1.0,
            ignore_index=len(class_names),
            use_normalized_coord=True),
        dict(type='NormalizePointsColor', color_mean=None),
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(
            type='Collect3D',
            keys=['points', 'pts_semantic_mask'],
            meta_keys=['file_name', 'sample_idx'])
    ]

    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=pipelines,
        classes=None,
        palette=None,
        modality=None,
        test_mode=False,
        ignore_index=None,
        scene_idxs=scene_idxs,
        label_weight=label_weight)

    data = scannet_dataset[0]
    points = data['points']._data
    pts_semantic_mask = data['pts_semantic_mask']._data
    file_name = data['img_metas']._data['file_name']
    sample_idx = data['img_metas']._data['sample_idx']

    assert file_name == './tests/data/scannet/points/scene0000_00.bin'
    assert sample_idx == 'scene0000_00'
    expected_points = torch.tensor([[
        0.0000, 0.0000, 1.2427, 0.6118, 0.5529, 0.4471, -0.6462, -1.0046,
        0.4280
    ],
                                    [
                                        0.1553, -0.0074, 1.6077, 0.5882,
                                        0.6157, 0.5569, -0.6001, -1.0068,
                                        0.5537
                                    ],
                                    [
                                        0.1518, 0.6016, 0.6548, 0.1490, 0.1059,
                                        0.0431, -0.6012, -0.8309, 0.2255
                                    ],
                                    [
                                        -0.7494, 0.1033, 0.6756, 0.5216,
                                        0.4353, 0.3333, -0.8687, -0.9748,
                                        0.2327
                                    ],
                                    [
                                        -0.6836, -0.0203, 0.5884, 0.5765,
                                        0.5020, 0.4510, -0.8491, -1.0105,
                                        0.2027
                                    ]])
    expected_pts_semantic_mask = np.array([13, 13, 12, 2, 0])
    original_classes = scannet_dataset.CLASSES
    original_palette = scannet_dataset.PALETTE

    assert scannet_dataset.CLASSES == class_names
    assert scannet_dataset.ignore_index == 20
    assert torch.allclose(points, expected_points, 1e-2)
    assert np.all(pts_semantic_mask.numpy() == expected_pts_semantic_mask)
    assert original_classes == class_names
    assert original_palette == palette
    assert scannet_dataset.scene_idxs.dtype == np.int32
    assert np.all(scannet_dataset.scene_idxs == np.array(scene_idxs))
    assert np.allclose(scannet_dataset.label_weight, np.array(label_weight),
                       1e-5)

    # test network inputs are (xyz, rgb)
    np.random.seed(0)
    new_pipelines = copy.deepcopy(pipelines)
    new_pipelines[3] = dict(
        type='IndoorPatchPointSample',
        num_points=5,
        block_size=1.5,
        sample_rate=1.0,
        ignore_index=len(class_names),
        use_normalized_coord=False)
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=new_pipelines,
        scene_idxs=scene_idxs)

    data = scannet_dataset[0]
    points = data['points']._data
    assert torch.allclose(points, expected_points[:, :6], 1e-2)

    # test network inputs are (xyz, normalized_xyz)
    np.random.seed(0)
    new_pipelines = copy.deepcopy(pipelines)
    new_pipelines[0] = dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=False,
        use_color=False,
        load_dim=6,
        use_dim=[0, 1, 2])
    new_pipelines.remove(new_pipelines[4])
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=new_pipelines,
        scene_idxs=scene_idxs)

    data = scannet_dataset[0]
    points = data['points']._data
    assert torch.allclose(points, expected_points[:, [0, 1, 2, 6, 7, 8]], 1e-2)

    # test network inputs are (xyz,)
    np.random.seed(0)
    new_pipelines = copy.deepcopy(pipelines)
    new_pipelines[0] = dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=False,
        use_color=False,
        load_dim=6,
        use_dim=[0, 1, 2])
    new_pipelines[3] = dict(
        type='IndoorPatchPointSample',
        num_points=5,
        block_size=1.5,
        sample_rate=1.0,
        ignore_index=len(class_names),
        use_normalized_coord=False)
    new_pipelines.remove(new_pipelines[4])
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=new_pipelines,
        scene_idxs=scene_idxs)

    data = scannet_dataset[0]
    points = data['points']._data
    assert torch.allclose(points, expected_points[:, :3], 1e-2)

    # test dataset with selected classes
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=None,
        classes=['cabinet', 'chair'],
        scene_idxs=scene_idxs)

    label_map = {i: 20 for i in range(41)}
    label_map.update({3: 0, 5: 1})

    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'chair']
    assert scannet_dataset.PALETTE == [palette[2], palette[4]]
    assert scannet_dataset.VALID_CLASS_IDS == [3, 5]
    assert scannet_dataset.label_map == label_map
    assert scannet_dataset.label2cat == {0: 'cabinet', 1: 'chair'}
    assert np.all(scannet_dataset.label_weight == np.ones(2))

    # test load classes from file
    import tempfile
    tmp_file = tempfile.NamedTemporaryFile()
    with open(tmp_file.name, 'w') as f:
        f.write('cabinet\nchair\n')

    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=None,
        classes=tmp_file.name,
        scene_idxs=scene_idxs)
    assert scannet_dataset.CLASSES != original_classes
    assert scannet_dataset.CLASSES == ['cabinet', 'chair']
    assert scannet_dataset.PALETTE == [palette[2], palette[4]]
    assert scannet_dataset.VALID_CLASS_IDS == [3, 5]
    assert scannet_dataset.label_map == label_map
    assert scannet_dataset.label2cat == {0: 'cabinet', 1: 'chair'}

    # test scene_idxs in dataset
    # we should input scene_idxs in train mode
    with pytest.raises(NotImplementedError):
        scannet_dataset = ScanNetSegDataset(
            data_root=root_path,
            ann_file=ann_file,
            pipeline=None,
            scene_idxs=None)

    # test mode
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path,
        ann_file=ann_file,
        pipeline=None,
        test_mode=True,
        scene_idxs=scene_idxs)
    assert np.all(scannet_dataset.scene_idxs == np.array([0]))
    assert np.all(scannet_dataset.label_weight == np.ones(len(class_names)))


def test_seg_evaluate():
    if not torch.cuda.is_available():
        pytest.skip()
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path, ann_file=ann_file, test_mode=True)
    results = []
    pred_sem_mask = dict(
        semantic_mask=torch.tensor([
            13, 5, 1, 2, 6, 2, 13, 1, 14, 2, 0, 0, 5, 5, 3, 0, 1, 14, 0, 0, 0,
            18, 6, 15, 13, 0, 2, 4, 0, 3, 16, 6, 13, 5, 13, 0, 0, 0, 0, 1, 7,
            3, 19, 12, 8, 0, 11, 0, 0, 1, 2, 13, 17, 1, 1, 1, 6, 2, 13, 19, 4,
            17, 0, 14, 1, 7, 2, 1, 7, 2, 0, 5, 17, 5, 0, 0, 3, 6, 5, 11, 1, 13,
            13, 2, 3, 1, 0, 13, 19, 1, 14, 5, 3, 1, 13, 1, 2, 3, 2, 1
        ]).long())
    results.append(pred_sem_mask)
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

    class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
                   'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'otherfurniture')
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            use_color=True,
            load_dim=6,
            use_dim=[0, 1, 2, 3, 4, 5]),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=False,
            with_label_3d=False,
            with_mask_3d=False,
            with_seg_3d=True),
        dict(
            type='PointSegClassMapping',
            valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24,
546
547
                           28, 33, 34, 36, 39),
            max_cat_id=40),
548
549
550
551
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
    ]
    ret_dict = scannet_dataset.evaluate(results, pipeline=eval_pipeline)
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    assert abs(ret_dict['miou'] - 0.5308) < 0.01
    assert abs(ret_dict['acc'] - 0.8219) < 0.01
    assert abs(ret_dict['acc_cls'] - 0.7649) < 0.01


def test_seg_show():
    import mmcv
    import tempfile
    from os import path as osp

    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path, ann_file=ann_file, scene_idxs=[0])
    result = dict(
        semantic_mask=torch.tensor([
            13, 5, 1, 2, 6, 2, 13, 1, 14, 2, 0, 0, 5, 5, 3, 0, 1, 14, 0, 0, 0,
            18, 6, 15, 13, 0, 2, 4, 0, 3, 16, 6, 13, 5, 13, 0, 0, 0, 0, 1, 7,
            3, 19, 12, 8, 0, 11, 0, 0, 1, 2, 13, 17, 1, 1, 1, 6, 2, 13, 19, 4,
            17, 0, 14, 1, 7, 2, 1, 7, 2, 0, 5, 17, 5, 0, 0, 3, 6, 5, 11, 1, 13,
            13, 2, 3, 1, 0, 13, 19, 1, 14, 5, 3, 1, 13, 1, 2, 3, 2, 1
        ]).long())
    results = [result]
    scannet_dataset.show(results, temp_dir, show=False)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
    # test show with pipeline
    tmp_dir = tempfile.TemporaryDirectory()
    temp_dir = tmp_dir.name
    class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
                   'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'otherfurniture')
    eval_pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            use_color=True,
            load_dim=6,
            use_dim=[0, 1, 2, 3, 4, 5]),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=False,
            with_label_3d=False,
            with_mask_3d=False,
            with_seg_3d=True),
        dict(
            type='PointSegClassMapping',
            valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24,
611
612
                           28, 33, 34, 36, 39),
            max_cat_id=40),
613
614
615
616
617
618
619
620
621
622
623
624
625
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
    ]
    scannet_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
    pts_file_path = osp.join(temp_dir, 'scene0000_00',
                             'scene0000_00_points.obj')
    gt_file_path = osp.join(temp_dir, 'scene0000_00', 'scene0000_00_gt.obj')
    pred_file_path = osp.join(temp_dir, 'scene0000_00',
                              'scene0000_00_pred.obj')
    mmcv.check_file_exist(pts_file_path)
    mmcv.check_file_exist(gt_file_path)
    mmcv.check_file_exist(pred_file_path)
    tmp_dir.cleanup()
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657


def test_seg_format_results():
    import mmcv
    from os import path as osp

    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    scannet_dataset = ScanNetSegDataset(
        data_root=root_path, ann_file=ann_file, test_mode=True)
    results = []
    pred_sem_mask = dict(
        semantic_mask=torch.tensor([
            13, 5, 1, 2, 6, 2, 13, 1, 14, 2, 0, 0, 5, 5, 3, 0, 1, 14, 0, 0, 0,
            18, 6, 15, 13, 0, 2, 4, 0, 3, 16, 6, 13, 5, 13, 0, 0, 0, 0, 1, 7,
            3, 19, 12, 8, 0, 11, 0, 0, 1, 2, 13, 17, 1, 1, 1, 6, 2, 13, 19, 4,
            17, 0, 14, 1, 7, 2, 1, 7, 2, 0, 5, 17, 5, 0, 0, 3, 6, 5, 11, 1, 13,
            13, 2, 3, 1, 0, 13, 19, 1, 14, 5, 3, 1, 13, 1, 2, 3, 2, 1
        ]).long())
    results.append(pred_sem_mask)
    result_files, tmp_dir = scannet_dataset.format_results(results)

    expected_label = np.array([
        16, 6, 2, 3, 7, 3, 16, 2, 24, 3, 1, 1, 6, 6, 4, 1, 2, 24, 1, 1, 1, 36,
        7, 28, 16, 1, 3, 5, 1, 4, 33, 7, 16, 6, 16, 1, 1, 1, 1, 2, 8, 4, 39,
        14, 9, 1, 12, 1, 1, 2, 3, 16, 34, 2, 2, 2, 7, 3, 16, 39, 5, 34, 1, 24,
        2, 8, 3, 2, 8, 3, 1, 6, 34, 6, 1, 1, 4, 7, 6, 12, 2, 16, 16, 3, 4, 2,
        1, 16, 39, 2, 24, 6, 4, 2, 16, 2, 3, 4, 3, 2
    ])
    expected_txt_path = osp.join(tmp_dir.name, 'results', 'scene0000_00.txt')
    assert np.all(result_files[0]['seg_mask'] == expected_label)
    mmcv.check_file_exist(expected_txt_path)